原子移离平衡位置后,原子核会从电子云中移开。光子的电场会与原子核(电子云偶极子)产生共振(场是附加的),从而被吸收。硅、锗等共价材料往往是较差的光吸收剂。需要晶格振动才能在晶体中诱导偶极子,然后光才能被吸收=间接间隙。
本文提出了通过整合量子信息测量(特别是纠缠熵和量子复杂性)来扩展爱因斯坦场方程。这些修改后的方程旨在弥合广义相对论和量子力学之间的差距,提供一个统一的框架,将时空的几何特性与量子信息理论的基本方面结合起来。这种方法的理论意义包括可能解决黑洞信息悖论等长期存在的问题和暗能量的新视角。本文介绍了经典解的修改版本,例如史瓦西度量和弗里德曼方程,并结合了量子修正。它还概述了引力波传播、黑洞阴影和宇宙学可观测量等领域的可测试预测。我们提出了几种未来研究的途径,包括探索与其他量子引力方法的联系,设计实验来测试该理论的预测。这项工作有助于对量子引力的持续探索,提供了一个可能将广义相对论和量子力学与可测试预测统一起来的框架。
摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
2009年由Aram Harrow,Avinatan Hassidim和Seth Lloyd提出的HHL算法用于求解方程的线性系统。我们将经典算法的操作计数与HHL算法进行比较,该算法是一种量子算法,可提高计算速度。要解决这样的线性系统,我们以A |形式抛弃了我们的问题x⟩= | b⟩,哪里| x⟩和| B⟩是归一化的向量,A是遗传学矩阵。该过程涉及通过使用量子相估计(QPE)子例程来找到Ma-Trix的特征值。这反过来利用了反量子傅立叶变换(QFT)。然后,确定的特征值用于实现受控的机构,以有效地找到矩阵a的倒数。这使我们能够计算| X = A - 1 | B⟩。最后一步是取消计算相位估计。我们接下来讨论该算法在物理硬件上的实现,并在IBM的量子计算机上模拟结果。
神经网络在学习和控制方面表现出了巨大的力量,尤其是在学习动力学和预测动态系统的行为方面[1],[2]。在学习和控制社区近似动态行为时,尤其是稳定性和被动性时,就会有利于稳定性和被动性。执行稳定性可以使学习模型受益,尤其是在概括方面。对于非线性系统,在[3],[4],[5]中使用高斯混合模型和多个数字模型研究了学习过程中的稳定性,甚至在线性系统的情况下,它是非平凡的[6]。对于非线性系统,存在各种稳定概念,其影响不同。在学习的背景下,一个称为Contaction [7](任何一对轨迹相互收敛)的强稳定性概念最近由于其平衡 - 独立的稳定性性质而受到了很多关注。对于离散时间设置,[8],[9],[10]已经开发了收缩,逐渐被动和耗散性神经动力学。在[11]中可以找到连续的时间对应物。[9],[11]的好处是他们的直接(即稳定模型的参数化参数化,使培训变得容易。但是,一个限制是它们在国家独立的二次度量标准方面执行收缩,从而限制了灵活性。用于学习稳定性弱的动态系统(例如,Lyapunov稳定性W.R.T.特定的平衡)通常需要应用保留相似稳定性特性的模型。稳定神经差异方程的关键成分是神经Lyapunov功能。从[12]和佩雷尔曼(Perelman)[13]的庞加罗猜想分辨率,所有lyapunov函数均具有对单位球的同型集合。这建议搜索候选Lyapunov
用于解决现实世界问题的数学建模一直是每个科学分支的最重要方面之一。这些模型是根据涉及功能及其导数的方程式提出的。这样的方程称为微分方程。如果仅涉及一个自变量,则该方程称为普通微分方程。该课程将证明普通微分方程对物理和其他现象建模的有用性。的互补数学方法,包括分析方法和图形分析。课程的基本内容包括:
•年龄•性•总胆固醇升高[≥6.22mmol/l或≥240mg/dl],•收缩压≥140mm Hg,•舒张压≥90mm Hg,Hg,•当前的吸烟或糖尿病,•糖尿病或糖尿病,包括身体活动和饮食质量>
HHL 算法由 Aram Harrow、Avinatan Hassidim 和 Seth Lloyd 于 2009 年提出,用于利用量子计算原理求解线性方程组。为了求解这样的系统,我们将问题表示为 A | x ⟩ = | b ⟩ 的形式,其中 | x ⟩ 和 | b ⟩ 是归一化向量,A 是厄米矩阵。该过程涉及利用量子相位估计 (QPE) 子程序查找矩阵的特征值。这反过来又利用了逆量子傅里叶变换 (QFT)。然后使用确定的特征值实现受控旋转,以有效地找到矩阵 A 的逆。这使我们能够计算 | x ⟩ = A − 1 | b ⟩ 。最后一步是取消计算相位估计。接下来我们讨论该算法在物理硬件上的逐步实现,并在IBM量子计算机上模拟结果。最后,我们将经典算法的运算次数与有望大幅提高计算速度的HHL算法进行比较。