从离散采样观测值建模连续动态系统是数据科学中的一个基本问题。通常,这种动态是非局部过程的结果,这些过程随时间呈现积分。因此,这些系统用积分微分方程 (IDE) 建模;微分方程的泛化,包含积分和微分分量。例如,大脑动力学不能准确地用微分方程建模,因为它们的行为是非马尔可夫的,即动态部分由历史决定。在这里,我们介绍了神经 IDE (NIDE),这是一种基于 IDE 理论的新型深度学习框架,其中使用神经网络学习积分算子。我们在几个玩具和大脑活动数据集上测试了 NIDE,并证明 NIDE 优于其他模型。这些任务包括时间外推以及根据看不见的初始条件预测动态,我们在自由行为小鼠的全皮层活动记录上进行了测试。此外,我们表明 NIDE 可以通过学习的积分算子将动态分解为马尔可夫和非马尔可夫成分,我们在服用氯胺酮的人的 fMRI 脑活动记录上进行了测试。最后,积分算子的被积函数提供了一个潜在空间,可以洞察底层动态,我们在广域脑成像记录上证明了这一点。总之,NIDE 是一种新颖的方法,它能够使用神经网络对复杂的非局部动态进行建模。
HHL 算法由 Aram Harrow、Avinatan Hassidim 和 Seth Lloyd 于 2009 年提出,用于利用量子计算原理求解线性方程组。为了求解这样的系统,我们将问题表示为 A | x ⟩ = | b ⟩ 的形式,其中 | x ⟩ 和 | b ⟩ 是归一化向量,A 是厄米矩阵。该过程涉及利用量子相位估计 (QPE) 子程序查找矩阵的特征值。这反过来又利用了逆量子傅里叶变换 (QFT)。然后使用确定的特征值实现受控旋转,以有效地找到矩阵 A 的逆。这使我们能够计算 | x ⟩ = A − 1 | b ⟩ 。最后一步是取消计算相位估计。接下来我们讨论该算法在物理硬件上的逐步实现,并在IBM量子计算机上模拟结果。最后,我们将经典算法的运算次数与有望大幅提高计算速度的HHL算法进行比较。
2009年由Aram Harrow,Avinatan Hassidim和Seth Lloyd提出的HHL算法用于求解方程的线性系统。我们将经典算法的操作计数与HHL算法进行比较,该算法是一种量子算法,可提高计算速度。要解决这样的线性系统,我们以A |形式抛弃了我们的问题x⟩= | b⟩,哪里| x⟩和| B⟩是归一化的向量,A是遗传学矩阵。该过程涉及通过使用量子相估计(QPE)子例程来找到Ma-Trix的特征值。这反过来利用了反量子傅立叶变换(QFT)。然后,确定的特征值用于实现受控的机构,以有效地找到矩阵a的倒数。这使我们能够计算| X = A - 1 | B⟩。最后一步是取消计算相位估计。我们接下来讨论该算法在物理硬件上的实现,并在IBM的量子计算机上模拟结果。
摘要。在本文中,我们提出了一种有效的指数积分有限元方法,用于求解矩形域中的一类半线性抛物线方程。提出的方法首先使用具有连续的多线矩形基函数的有限元近似进行模型方程的空间离散化,然后采用明确的指数runge-kutta方法,用于产生半差异系统的时间集成,以产生全diScrete的数值解决方案。在某些规律性假设下,在h 1 -norm中测得的错误估计值是成功得出的,该方案具有一个和两个RK阶段。更值得注意的是,该方法的质量和系数可以用正交矩阵同时对角线,该基质提供了基于张量的乘积谱分解位置和快速傅立叶变换的快速溶液过程。还进行了两个维度和三个维度的各种数值实验,以验证理论结果并证明该方法的出色性能。
摘要:人工智能 (AI) 和认知计算 (CC) 是不同的,这就是为什么每种技术都有其优点和缺点,这取决于企业想要优化的任务/操作。如今,只需将 CC 与 AI 的广泛主题联系起来,就很容易混淆两者。这样,想要实施 AI 的公司就知道,在大多数情况下,他们想要的是 CC 提供的功能。在这些情况下,知道如何区分它们很重要,这样就可以确定在哪种情况下一种比另一种更合适,从而更多地利用每种技术提供的优势。该项目专注于突出这两种技术的能力,更具体地说是在智能系统实施和公司对它们的兴趣有利的商业环境中。它还确定了这些技术的哪些方面对公司最有吸引力。根据这些信息,评估这些方面是否与决策相关。数据分析是通过采用偏最小二乘结构方程模型 (PLS-SEM) 和描述性统计技术进行的。
当今的中型量子计算机虽然不完美,但已经能够执行明显超出现代经典超级计算机能力的计算任务。然而,到目前为止,量子大规模解决方案仅针对有限的问题集实现。这里采用基于相位估计和电路宽度和深度的经典优化的混合算法来解决科学和工程领域中普遍存在的一类特定大型线性方程组。引入了基于相关相位估计幺正运算的纠缠特性的线性系统分类,从而能够通过简单的矩阵到电路映射高效地搜索解决方案。在几台 IBM 量子计算机超导量子处理器上实现了一个 2 17 维问题,这是量子计算机解决线性系统的破纪录结果。演示的实现为未来线性方程组解的量子加速探索设定了明确的基准。
输入:时刻数:S,热化学标量数:N 输入:𝚿∈ℝ 𝑆×𝑁:各个时刻热化学状态的真实解 要求:𝐼 𝑆:一个数值 ODE 求解器,可及时推进 i = 1 到 N 的解 >> 循环遍历所有热化学标量 初始化𝝃 𝑖 >> 初始化第 i 个物种的模型参数
精确计算多费米子量子系统的基态和激发态是当代物理和计算科学中最重要的挑战之一,其解决方案将从量子计算设备的出现中受益匪浅。现有的使用相位估计或变分算法的方法存在潜在缺点,例如深度电路需要大量误差校正或非平凡的高维经典优化。在这里,我们引入了一个收缩特征值方程的量子求解器,它是经典方法的量子类似物,用于求解基态和激发态的能量和简化密度矩阵。该求解器不需要深度电路或困难的经典优化,并且比其经典对应物实现了指数级加速。我们通过在量子模拟器和两个 IBM 量子处理单元上进行计算来演示该算法。
让我们考虑一个求解函数 f(x, t) 的偏微分方程,其中 x 是 ad 维向量。为了在量子设备上存储和操作 PDE 的解,第一步通常是离散化空间:我们创建 ad 维格,并将位于格中位置 xi 的节点写为 fi (t) := f(xi, t)。因此,问题简化为求解 f(t) 中的常微分方程 (ODE),并且大多数求解 ODE 的量子算法都可以应用于我们的新问题。然而,在求解 PDE 时,需要在复杂性分析中考虑离散化过程中引入的误差。通过引入解的精度和 f 的维数之间的依赖关系,它会改变可以获得的加速性质,正如我们将在第 IV 部分中看到的那样。
近年来,在线性普通微分方程以及线性偏微分方程的量子算法开发中取得了重大进展。在非线性微分方程的量子算法发展中没有类似的进展。在当前工作中,重点放在流体力学中的管理方程式中产生的非线性偏微分方程。首先,讨论了与量子计算背景下与非线性方程相关的关键挑战。然后,作为这项工作的主要贡献,提出了代表Navier中的非线性对流项 - Stokes方程中的量子电路。量子算法在计算基础上引入了使用编码,并基于量子傅立叶变换采用算术。此外,使用浮动点类型数据表示,而不是量子算法中通常使用的定点表示。复杂性分析表明,即使在当前和近期量子计算机上可用的Qubit数量有限(<100)中,非线性产品项也可以很好地计算。对于代表性的示例问题,证明了在浮点量子算术中包括亚正常数的重要性。讨论了将引入算法嵌入到大规模算法中所需的进一步开发步骤。