单元I:拉普拉斯变换:某些功能的定义和拉普拉斯变换 - 转移定理;衍生物和积分的拉普拉斯转换 - 单位步骤功能 - 迪拉克的dilta函数,周期性函数。反向拉普拉斯转换-Convolution定理(无证明)。应用程序:使用拉普拉斯变换求解普通微分方程(初始值问题)。单元-II:傅立叶级数和傅立叶变换:傅立叶序列:简介,周期功能,一系列周期函数,差异和奇数函数,偶数和奇数功能,间隔的变化,半范围傅立叶正弦和余弦系列。傅立叶变换:傅立叶积分定理(无证明) - 曲线和余弦的正弦和余弦变换 - 跨性别者(文本book-i中的第22.5条) - 逆变换 - 卷积定理(没有证明)有限的傅立叶变换。
MTEC101 工程师高等数学 单元 1 傅里叶变换 - 简介、傅里叶积分定理、傅里叶正弦和余弦积分、傅里叶积分的复数形式、傅里叶变换、逆傅里叶变换、性质、调制定理、傅里叶变换的卷积定理、帕塞瓦尔恒等式、函数导数的傅里叶变换、傅里叶与拉普拉斯变换之间的关系。 单元 2 Z 变换 - 简介、Z 变换的性质、逆 Z 变换的求值。 单元 3 矩阵和线性方程组 - 通过高斯消元法及其改进法解线性联立方程、Crout 三角化方法、迭代方法 - 雅可宾方法、高斯-赛达尔方法、通过迭代确定特征值。单元 4 保角映射-保角映射、线性变换、双线性变换、施瓦茨-克里斯托费尔变换。单元 5 变分法-欧拉-拉格朗日微分方程、最速降线问题及其他应用。等周问题、汉密尔顿原理和拉格朗日方程。瑞利-里兹法、伽辽金法。参考文献:1. 高等工程数学 - 作者:BS Grewal 博士;Khanna Publishers 2. 傅里叶级数与边界值问题 - 作者:Churchill;McGraw Hill。3. 复变量与应用 - 作者:Churchill;McGraw Hill。4. 变分法 - 作者:Elsgole;Addison Wesley。5. 变分法 - 作者:Galfand & Fomin;Prentice Hall。 6. 积分变换的使用 - 作者:IN Sneddon、Tata McGraw Hill。
引言 ;一些基本函数的逆变换 ;求逆变换的一般方法 ;求逆拉普拉斯变换的偏分式和卷积定理 ;用于求常系数线性微分方程和联立线性微分方程的解的应用 第 3 单元:傅里叶变换 [09 小时] 定义 - 积分变换 ;傅里叶积分定理(无证明) ;傅里叶正弦和余弦积分 ;傅里叶积分的复数形式 ;傅里叶正弦和余弦变换 ;傅里叶变换的性质 ;傅里叶变换的帕塞瓦尔恒等式。 第 4 单元:偏微分方程及其应用 [09 小时] 通过消去任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于求一维解的应用
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,dirac-delta函数,laplace的周期性函数,周期性拉普拉斯转换,互惠变换,卷积变换,互惠定理,solude for solve lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areviations lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。
详细课程大纲 第一单元:变换微积分拉普拉斯变换:拉普拉斯变换、性质、逆、卷积、用拉普拉斯变换求某些特殊积分、初值问题的解。傅里叶级数:周期函数、函数的傅里叶级数表示、半程级数、正弦和余弦级数、傅里叶积分公式、帕塞瓦尔恒等式。傅里叶变换:傅里叶变换、傅里叶正弦和余弦变换。线性、缩放、频移和时移性质。傅里叶变换的自互易性、卷积定理。应用于边界值问题。第二单元:数值方法近似和舍入误差、截断误差和泰勒级数。插值 - 牛顿前向、后向、拉格朗日除差。数值积分 - 梯形、辛普森 1/3。通过二分法、迭代法、牛顿-拉夫森法、雷古拉-法尔西法确定多项式和超越方程的根。通过高斯消元法和高斯-西德尔迭代法求解线性联立线性代数方程。曲线拟合-线性和非线性回归分析。通过欧拉法、修正欧拉法、龙格-库塔法和预测-校正法求解初值问题。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,diracdelta函数,laplace的周期性函数,周期性的拉普拉斯转换,逆向拉普拉斯变换,卷积变换,卷积定理,应用程序lineal linear lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areve lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,dirac-delta函数,laplace的周期性函数,周期性拉普拉斯转换,互惠变换,卷积变换,互惠定理,solude for solve lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areviations lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。模块4:数值差异和集成和解决方案:(8小时)
AA:辅助活动29 A. Goss。 :Ashbya Gossypii 30 Cazy:碳水化合物活性酶数据库31 Cazyme:碳水化合物活性酶32 CBM:碳水化合物结合模块33 CE:碳水化合物酯酶34 C. PIN。 :Chitinophaga Pinensis 35 C. Vacc。 : Chromobacterium vaccinii 36 FTIR: Fourier Transform InfraRed (spectroscopy) 37 G. alk.. : Gordonia alkanivorans 38 GH: Glycoside Hydrolase 39 GT: Glycosyltransferase 40 LAP: L-Leucine-7-amido-4-methylcoumarin hydrochloride 41 OD: Optical density 42AA:辅助活动29 A. Goss。:Ashbya Gossypii 30 Cazy:碳水化合物活性酶数据库31 Cazyme:碳水化合物活性酶32 CBM:碳水化合物结合模块33 CE:碳水化合物酯酶34 C. PIN。:Chitinophaga Pinensis 35 C. Vacc。: Chromobacterium vaccinii 36 FTIR: Fourier Transform InfraRed (spectroscopy) 37 G. alk.. : Gordonia alkanivorans 38 GH: Glycoside Hydrolase 39 GT: Glycosyltransferase 40 LAP: L-Leucine-7-amido-4-methylcoumarin hydrochloride 41 OD: Optical density 42
导致死亡的综合终点事件,以及综合终点事件的单个组成部分,以及其他综合终点事件,如心血管死亡或因心力衰竭恶化住院,以及缺血性致命或非致命性中风或短暂性脑缺血发作。• FOURIER 证明了依洛尤单抗在主要综合终点事件,以及心血管死亡、心肌梗死或中风等关键次要综合终点事件方面优于安慰剂。然而,对于每个终点事件,治疗效果都很小(依洛尤单抗和安慰剂在每个终点事件上的绝对差异为 1.5%),这种差异的临床意义尚不清楚。• DBC 指出,FOURIER 中观察到的 LDL-C 大幅降低导致主要心血管事件减少相对较小,并且没有降低死亡风险。• GLAGOV 的主要结果是从基线到第 78 周动脉粥样硬化体积百分比的变化,次要结果包括第 78 周总动脉粥样硬化体积的名义变化,或第 78 周时斑块消退的参与者。虽然 GLAGOV 达到了其主要结果,证明了 evolocumab 在减少动脉粥样硬化体积百分比方面优于安慰剂,但这一发现的临床意义尚不清楚。• 有关 Repatha™ 系统评价的详细信息,请参阅 CDEC 最终建议:https://www.cadth.ca/evolocumab-0。
“在局部傅里叶变换的维格纳表示中……可以有正值和负值,这会导致整个函数的傅里叶积分出现细微的抵消”