高击穿电压:GaN器件可以处理高电压 高电子迁移率:GaN晶体管用于无线通信的功率放大器 高电子迁移率:GaAs表现出优异的电子传输特性,使其适用于高频应用 低噪声系数:基于GaAs的器件通常用于敏感RF接收器的低噪声放大器(LNA) 高功率处理能力:GaAs功率放大器在RF通信系统中普遍存在。
图 1:(a) GaAs 核(蓝色)- Ge 壳(红色)NW 示意图,具有受控晶相:纤锌矿 (WZ)、闪锌矿 (ZB),具有堆垛层错 (SF) 区域。通过 RHEED 原位监测样品,以获得有关 GaAs/Ge NW 晶体结构的实时信息。在 WZ GaAs 生长期间(b)29 分钟(c)35 分钟和六方 Ge 生长期间(d)3 分钟(e)10 分钟,沿 [1-10] 方位角记录的 RHEED 图案。WZ 点以白色箭头突出显示。(f) 45° 倾斜 SEM 图像(二次电子对比度)显示 GaAs/Ge NW。比例尺为 1 m。
在5G时代之前,硅基横向双扩散金属氧化物半导体(Si-LDMOS)是4G LTE射频功率放大器市场的主流方案,目前已基本成为主流,技术成熟度较高。传统Si-LDMOS在3.5GHz以下频率表现良好,但无法满足5G应用对更高频率的要求。砷化镓(GaAs)应用工作频率主要在8GHz以内,适用于5G基站的中低功率器件。在高功率射频应用中,氮化镓(GaN)优势明显,是5G宏站的必备材料。GaAs和GaN凭借更优的功率系统效率、性能和成本,有望取代硅成为功率开关技术的支柱。作为宽带隙(WBG)半导体材料,GaAs和GaN器件的效率均高于Si。 GaAs/GaN 器件正在取代 5G 基站、雷达和航空电子设备以及其他宽带应用中的 Si-LDMOS 器件。在未来的网络设计中,由于物理特性的限制,GaAs/GaN 和其他 WBG 材料将取代大多数现有的 Si-LDMOS 器件 [1]。一般来说,5G 基站将采用基于 GaAs/GaN 的 PA 来实现更高的频率,而 Si-LDMOS 仍将只是其中的一部分,用于较低频率
过去几年中,砷化镓 (GaAs) 晶体管和集成电路在太空和军事领域的应用大大扩展。开发这种化合物半导体的主要原因是 GaAs 器件可以在更高频率下工作,并且比硅器件具有更高的抗辐射能力。然而,目前硅技术在可靠性方面仍然占有相当大的领先地位。硅优越可靠性的基础是与生俱来的,在于其氧化物的性质,这种氧化物可以在受控条件下生长,并具有更好的保护性能。不幸的是,GaAs 的氧化物不具备这些品质。我们对市售 GaAs 信号晶体管进行可靠性研究的目的是独立评估它们在星载射频 (RF) 系统(如 X 波段发射器和 S 波段信标接收器)中的使用成熟度。具体来说,在本文中,我们报告了对高电子迁移率晶体管 (HEMT)、信号金属半导体场效应晶体管 (MESFE T)、功率 MESFET 和数字过程控制监控设备的评估。为了帮助读者理解 GaAs 技术,
砷化甘氨酸(GAAS)是具有高饱和电子速度和高电子迁移率的III-V化合物半导体材料,其电气性能远高于硅材料,该材料已广泛用于高频设备中[5]。GAAS的HEMT正在成为RF组件的最有希望的候选者,例如下一代商业无线通信系统的低噪声或功率放大器[7]。随着新的外延技术和纳米门光刻的开发,基于20 nm GAAS的HEMT设备的最大振荡频率(F MAX)达到了1270 GHz [8]。此外,最大的可用GAAS晶圆可能高达6英寸,这可以降低设备制造成本并进一步促进基于GAA的HEMT设备的广泛使用[5]。但是,当设备应用于各种产品时,可靠性将成为必须解决的最明显问题之一。崩溃电压不仅是影响可靠性的重要因素之一,而且是设备在高功率中的应用。
量子点 (QDs) 能够产生非经典光态,是实现量子信息技术的非常有希望的候选者。然而,这些技术所要求的高光子收集效率可能无法达到嵌入在高折射率介质中的“独立”半导体 QD。本文介绍了一种新颖的激光写入技术,能够直接制造与电介质微球自对准的 QD(精度为 ± 30 纳米)。当使用 0.7 数值孔径的物镜时,微球的存在可使 QD 发光收集增强 7.3±0.7 倍。该技术利用激光破坏 GaAs 1-xNx:H 中 N-H 键的可能性,获得低带隙材料 GaAs 1-xNx。微球沉积在 GaAs 1 − x N x :H/GaAs 量子阱的顶部,用于产生光子纳米喷射,该光子纳米喷射可精确去除微球下方的氢,从而在距样品表面预定距离处创建 GaAs 1 − x N x QD。二阶自相关测量证实了使用此技术获得的 QD 发射单光子的能力。
量子点 (QDs) 能够产生非经典光态,是实现量子信息技术的非常有希望的候选者。然而,这些技术所要求的高光子收集效率可能无法达到嵌入在高折射率介质中的“独立”半导体 QD。本文介绍了一种新颖的激光写入技术,能够直接制造与电介质微球自对准的 QD(精度为 ± 30 纳米)。当使用 0.7 数值孔径的物镜时,微球的存在可使 QD 发光收集增强 7.3±0.7 倍。该技术利用激光破坏 GaAs 1-xNx:H 中 N-H 键的可能性,获得低带隙材料 GaAs 1-xNx。微球沉积在 GaAs 1 − x N x :H/GaAs 量子阱的顶部,用于产生光子纳米喷射,该光子纳米喷射可精确去除微球下方的氢,从而在距样品表面预定距离处创建 GaAs 1 − x N x QD。二阶自相关测量证实了使用此技术获得的 QD 发射单光子的能力。
随着集成电路工艺的不断发展,锁相环 (PLL) 频率源技术被广泛应用于各类传感器,如用于图像传感器的高精度时钟发生器[1–4]。近年来,得到广泛研究的高精度传感器,特别是植入式医疗传感器和高精度图像传感器,要求低功耗、大输出功率、低相位噪声[5]。作为传感器的关键模块,PLL 的性能在一定程度上决定了传感器的性能。电荷泵锁相环 (CPPLL) 因其低相位噪声、变相位差和高频工作等特点而成为 PLL 的代表性结构[6–8]。已经发表了许多关于 CPPLL 的研究成果,如[9–14]。在[11]中,采用 65nm Si CMOS 工艺实现了 CPPLL。提出的 CPPLL 采用了一种新型超低压电荷泵。所提出的CPPLL工作频率为0.09 GHz~0.35 GHz,在1 MHz频偏处相位噪声为-90 dBc/Hz,电路功耗约为0.109 mW。[9]提出了一种基于GaAs pHEMT的PLL,采用多种电路技术组合对所提出的PLL进行优化,降低相位噪声,提高运行速度。所提出的PLL工作频率约为37 GHz,在1 MHz频偏处相位噪声为-98 dBc/Hz,电路功耗约为480 mW。从以上参考文献可以看出,GaAs pHEMT具有高增益、优异的功率特性、低噪声的特点[15 – 17]。采用GaAs pHEMT工艺可以实现低噪声、更高输出功率的PLL,但基于GaAs pHEMT工艺的电路在实现更高频率的同时引入了较大的功耗,而基于GaAs pHEMT工艺的CPPLL设计存在诸多困难。另外,CPPLL的设计需要在相位噪声、功耗、面积、工艺等性能问题上做出妥协。因此,本文提出了一种基于0.15μm GaAs的改进结构CPPLL。
引言半导体量子点(QD)是一种定制的合成,相当于原子,在广泛的现代半导体设备中发现了用途1。纳米构造已经提供了广泛的电子和光学特性。本文将通过专注于当今研究的三个独特的Keystone系统的电子结构来证明其巨大的潜力2和可调节性3-5:(i)SB-INAS /GAAS SubMonolayer QD,(II)在1-x Ga x中为y SB 1- y SB 1-y /y /y /y /gap qds和(III)QD基于QD的量子量子cascade cascade lasscade lasscade lassersersers。(i)在过去的20年1,6中,INAS/GAAS QD一直是综合研究的重点,导致量子点激光器7和单光子发射器2,8。为提高QD密度和改善载体动力学,在GAA上开发了QD形成9、10:INAS的沉积量少于GAAS的QD形成9、10:在GAAS上的单层(ML)的沉积,然后重复多个时间,以重复多个时间