图 1. 单级连续培养(a)和两级连续培养(b)的示意图。在两级连续培养(b)中,橙色箭头、虚线框和字母代表计算整个过程的生物质和乙醇酸生产率的过程和参数。
摘要:轮状病毒(RV)和诺如病毒(NOV)是全球急性胃肠炎(年龄)的主要原因。几项研究表明,由于它们在肠道上皮表面的存在是对许多NOV和RV基因型的敏感性至关重要的,因此,由于它们在肠道上皮表面上的存在是至关重要的,因此,组织血管组抗原(HBGA)在NOV和RV感染中起作用。在基因中为HBGAS合成所需酶的代码的多态性导致分泌者或非代表和刘易斯阳性或刘易斯负个体。,尽管关于11月感染的人似乎更容易受到RV感染的影响,但有太多的差异阻止了得出结论的能力。第二个因素是影响肠道病毒感染是宿主的肠道菌群。体外和动物研究已经确定肠道菌群限制,但在某些情况下会增强肠道病毒感染。微生物群可以增强NOV或RV感染的方式包括病毒稳定和促进病毒附着在宿主细胞上,而对少微生物群和无细菌动物进行的实验将免疫调节视为微生物群限制感染的机制。通过活着,减弱的RV疫苗和对响应者和非反应者个体的菌群分析的人类试验也允许鉴定与疫苗效率相关的细菌分类群。随着有关宿主(糖生物学和免疫系统),肠道菌群和肠道病毒之间建立的复杂关系的更多信息,新的途径将开放,以开发新的抗NOV和抗RV疗法。
能量代谢重编程是癌症的重要标志,为探索癌症的发展提供了新的研究视角,但卵巢癌抗糖酵解治疗的最关键靶点仍不清楚。因此,本研究利用Oncomine、GEPIA和HPA数据库,结合不同组织类型的卵巢癌临床标本,综合评估卵巢癌中糖酵解相关代谢物转运体和酶的表达水平。我们选取Kaplan-Meier Plotter数据库中预后价值最高的磷酸甘油酸激酶1(PGK1)进行后续验证。免疫化学检测证实PGK1在卵巢癌中高表达,PGK1表达水平是卵巢癌患者生存和预后的独立危险因素。功能分析显示PGK1表达水平与中性粒细胞浸润呈正相关。细胞实验证实,抑制卵巢癌细胞中PGK1的表达可降低上皮间质转化(EMT)过程,导致细胞迁移和侵袭能力丧失。小分子NG52剂量依赖性地抑制卵巢癌细胞的增殖。此外,NG52通过抑制PGK1活性来减少EMT过程并逆转Warburg效应。因此,PGK1是卵巢癌抗糖酵解治疗的一个有吸引力的分子靶点。
简单摘要:由于HER2细胞表面蛋白的高水平,大约三分之一的乳腺癌被分类为HER2阳性。靶向HER2的药物主要是成功的,但是一旦治疗完成,这种类型的癌症就会以高频回来。高水平的HER2还会导致雷帕霉素(MTOR)和增强葡萄糖代谢的机理靶标的激活升高,这两者都支持癌症的生长。基于此,已经开发出一种药物来阻止MTOR并在临床研究中或与针对HER2的药物结合进行测试。这些治疗方法是成功的,但具有更大的毒性作用,并且癌症恢复的可能性更高。使用在HER2阳性乳腺癌患者中模仿葡萄糖剥夺的药物尚未进行测试;然而,临床前研究表明,通过将模仿葡萄糖剥夺与MTOR抑制剂的药物相结合,可以减少HER2阳性乳腺肿瘤。
3.09.1 简介 204 3.09.1.1 Leloir 与非 Leloir GT 及其供体底物 204 3.09.1.2 基于序列的 CAZy 家族和 GT 的结构分类 205 3.09.1.3 GT 的机制 205 3.09.1.3.1 反转 GT 机制 205 3.09.1.3.2 保留 GT 机制 206 3.09.2 GT 活性的抑制 208 3.09.2.1 GT 抑制剂的类型 208 3.09.2.1.1 GT 底物类似物和过渡态类似物 208 3.09.2.1.2 GT 的糖基化抑制剂 211 3.09.2.1.3 天然产物作为 GT 抑制剂 212 3.09.2.1.4 结构多样的合成小分子作为 GT 抑制剂 214 3.09.2.2 识别 GT 抑制剂的高通量筛选策略 215 3.09.2.2.1 通过核苷酸释放测量 GT 活性的偶联酶测定 215 3.09.2.2.2 基于碳水化合物微阵列的 GT 测定 216 3.09.2.2.3 基于荧光偏振的 GT 测定 217 3.09.2.2.4 使用荧光团标记的糖供体直接荧光测定 GT 活性 219 3.09.2.2.5 糖苷酶依赖性荧光偶联 GT 测定 219 3.09.3 GT 活性工程 221 3.09.3.1 使用合理的蛋白质设计修改 GT 活性 221 3.09.3.1.1 GT 的定向诱变 221 3.09.3.1.2 域交换生成 GT 嵌合体 222 3.09.3.2 高通量筛选策略及其在发现和设计 GT 活性中的应用 225 3.09.3.2.1 用于天然产物 GT 定向进化的基于平板的荧光猝灭策略 225 3.09.3.2.2 通过 FACS 进行细胞内荧光捕获以筛选 GT 活性 225 3.09.3.2.3 在基于平板和颗粒的体外试验以及基于 FACS 的体内试验中利用聚糖结合蛋白筛选 GT 活性 227 3.09.4 结论 228 参考文献 228
抗癌药是癌症治疗的重要组成部分。癌细胞可以通过例如P-糖蛋白1(P-gp)过表达或突变积累的一部分生长信号通路,凋亡途径或修复系统中突变的一部分突变中对这些药物产生抗性。本质上,转移性癌症,晚期癌症或干细胞样癌症通常具有耐药性,并且很难使用当前的抗癌药物治疗。P-gp的过表达,也称为多药抗性蛋白1(MDR1)或ATP结合盒子子家庭B成员1(ABCB1),是抗癌药物抗性的众所周知的机制之一。干细胞状的癌症经常在其膜上过表达P-gp,从而使用当前可用的抗癌药物导致不足的治疗(1)。因此,研究新的治疗方法以治疗过表达药物耐药性癌细胞的新型治疗选择。识别靶向这些癌症的机制可以克服当前抗癌药物的不确定,并为P-gp过表达的癌症患者带来更好的预后。已经开发了多种P-gp抑制剂,但是它们在正常细胞中,尤其是与抗癌药物结合使用,限制了其公用事业。药物重新定位已用于治疗各种疾病。可以避免重复大量毒性测试,因此可以降低成本并加快用于治疗耐药癌症患者的药物的过程(2)。食品药品监督管理局(FDA)已经在长期以来在人类中使用的大量药物的利益和不利影响很容易获取数据。识别现有的FDA批准药物,可以重新定位到靶向过表达P-gp的癌细胞,可以在对抗癌药物抗性的患者中更好地治疗。由于这些药物已经在临床环境中使用,因此药物重新定位将提供一种有效的方法来满足P-gp
摘要:covid-19是由新型包裹的β-核心管病毒引起的,其基因组RNA与严重的急性呼吸系统综合症 - 科罗纳病毒(SARS-COV)密切相关,并被称为冠状病毒2(SARS-COV-2)。在这项研究中,针对RBD专门停靠了六种合成药物。观察到六种化合物中的大多数与特定的非共价相互作用非常吻合。oseltamivir被发现是与RBD最强烈的相互作用,表现出高适应性和低自由能的结合能量。它在活性位点的区域中形成了多个非共价键。羟基氯喹还表现出溶剂可访问性的高结合亲和力,并且非常适合S蛋白的活性口袋。结果表明,这些化合物可能是S蛋白质的有效抑制剂,在某种程度上可以阻止其与ACE-2的相互作用。从SARS-COV-2峰值蛋白的3D结构中显而易见,随着不同药物的相互作用,这会导致不适合结合ACE2受体。因此,有必要阐明这些化合物对SARS-COV-2的作用的实验室研究,以进行临床评估。氯喹,羟基氯喹和Oseltamivir通过非共价相互作用与S蛋白的受体结合结构域相互作用,并被建议作为Covid-19的出色候选者。
摘要:与其他多因素疾病一样,阿尔茨海默氏病(AD)是全身分解不同生理网络的结果。结果,有几条证据表明,它可能会更有效地通过针对不同失调的生化靶标或途径的分子来解决。在这种情况下,新分子被指向的目标的选择至关重要。多年来,此类多毒剂指导的配体(MTDL)的设计一直基于选择“胆碱能”和“β-淀粉样蛋白”假设中涉及的主要靶标。最近,由于其具有吸引力的特性,有一些有关靶向糖原合酶激酶3β(GSK-3β)酶的MTDL的报道。的确,该酶参与TAU高磷酸化,控制多种CNS特异性信号通路,并与与AD发病机理有关的几个因素建立了严格的连接。在当前的最小人物中,我们将讨论GSK-3β-定向MTDL的发展的原因,并突出一些最近获得这些新类别的MTDL作为潜在疾病修饰药物的原因。
纳米颗粒(NPS)是可以携带靶向癌症分子和药物的新型平台,以避免由于标准化疗治疗中非专业药物递送而引起的严重副作用。癌细胞的特征是异常的膜,代谢变化,凝集素受体的存在,葡萄糖转运蛋白(GLUT)过表达以及细胞表面上编程死亡的免疫受体的糖基化。这些特征导致了癌症治疗的几种策略的发展,包括大量碳水化合物模型的NP,这些NP已成为细胞选择性药物输送系统,因为它们会增加纳米粒子 - 细胞相互作用和对携带药物的吸收。当前,NP糖基化的潜力增强了携带的治疗抗肿瘤剂的安全性和效率,并且已广泛认可,并且在该领域中积累了许多信息。本综述旨在重点介绍NP稳定,降低毒性和药代动力学改善的最新进展以及NP糖基化的有希望的潜力,从描述的用于癌症治疗的药物输送系统的分子机制的角度来看。从临床上的概念验证到诊所的治疗价值,糖基化NP所带来的挑战和机会,重点是它们在纳米果的开发中的适用性。
Brandon C. Farmer 1,Holden C. Williams 1,2, Young 3,Jude C. C. C. 2.7,Sun 7,Lance A. Johnson 1.2 *Brandon C. Farmer 1,Holden C. Williams 1,2,Young 3,Jude C. C. C. 2.7,Sun 7,Lance A. Johnson 1.2 *