在量子计算机上模拟汉密尔顿动力学是量子信息处理的核心。在本次演讲中,我将讨论交换和反交换在汉密尔顿模拟中的作用。在 Trotter 算法中,最坏情况的算法误差与汉密尔顿加数的嵌套交换子的谱范数有关。我们最近的工作 [PRL 129.270502] 表明,汉密尔顿模拟的平均性能与嵌套交换子的 Frobenius 范数有关。为了处理交换子中的 Trotter 误差,我们提出了使用 LCU 补偿 Trotter 误差的汉密尔顿模拟算法,该算法兼具两者的优点 [arXiv: 2212.04566]。反交换一直被视为一种障碍,它使模拟变得更加困难,并且需要额外的资源才能达到所需的模拟精度。在我们最近的工作 [Quantum 5, 534 (2021)] 中,我们发现反向交换可以在 LCU 类型的汉密尔顿模拟算法中提供优势。基于反向交换取消,我们减少了算法误差并提出了改进的截断泰勒级数算法。
理解非平衡量子动力学的一个有力视角是通过其纠缠内容的时间演化。然而,除了纠缠熵的几个指导原则外,迄今为止,人们对纠缠传播的精细特性知之甚少。在这里,我们从纠缠汉密尔顿量的角度揭示了纠缠演化和信息非平衡传播的特征。我们使用最先进的数值技术结合共形场论研究了原型 Bose-Hubbard 模型的量子猝灭动力学。在达到平衡之前,发现纠缠汉密尔顿量中出现了一个电流算子,这意味着纠缠扩散是由粒子流携带的。在长时间极限下,子系统进入稳定阶段,这由纠缠汉密尔顿量动态收敛到热系综的期望值所证明。重要的是,稳定状态下的纠缠温度与空间无关,这提供了平衡的直观特征。这些发现不仅为平衡统计力学如何在多体动力学中出现提供了重要信息,而且还为从纠缠哈密顿量的角度探索量子动力学增加了一个工具。
信息争夺是指迅速传播和编码局部量子信息在整个多体系统上的统一动力,并使该信息可从任何小子系统访问。虽然信息争夺是理解复杂的量子多体动力学的关键,并且在随机统一模型中得到了充分理解,但在哈密顿系统中几乎没有探索它。在这封信中,我们研究了各种与时间无关的哈密顿系统(包括混乱的旋转链和sachdev-ye-kitaev模型)中的信息恢复。我们表明,在某些但不是全部的混乱模型中,信息恢复是可能的,它根据能量谱或超时订购的相关器突出了信息恢复与量子混乱之间的差异。我们还表明,信息恢复探针是由于动态的信息理论特征的变化引起的。
我们研究并行性如何加速量子模拟。提出了一种并行量子算法来模拟一大类具有良好稀疏结构的汉密尔顿量的动力学,这些汉密尔顿量称为均匀结构汉密尔顿量,其中包括局部汉密尔顿量和泡利和等各种具有实际意义的汉密尔顿量。给定对目标稀疏汉密尔顿量的 oracle 访问,在查询和门复杂度方面,以量子电路深度衡量的并行量子模拟算法的运行时间对模拟精度 ϵ 具有双(多)对数依赖性 polylog log(1 /ϵ )。这比以前没有并行性的最优稀疏汉密尔顿模拟算法的依赖性 polylog(1 /ϵ ) 有了指数级的改进。为了获得这个结果,我们基于 Childs 的量子行走引入了一种新的并行量子行走概念。目标演化幺正用截断泰勒级数近似,该级数是通过并行组合这些量子行走获得的。建立了一个下限Ω(log log(1 /ϵ )),表明本文实现的门深度对ϵ 的依赖性不能得到显著改善。我们的算法被用来模拟三个物理模型:海森堡模型、Sachdev-Ye-Kitaev 模型和二次量子化的量子化学模型。通过明确计算实现预言机的门复杂度,我们证明了在所有这些模型上,我们的算法的总门深度在并行设置下都具有 polylog log(1 /ϵ ) 依赖性。
摘要 —本文介绍了互连和阻尼分配无源性控制 (IDA-PBC) 原理在固态变压器 (SST) 的端口控制相量哈密顿 (PCPH) 模型中的应用(该模型由三个阶段组成,即交流/直流整流器、双有源桥式转换器和直流/交流逆变器)。使用动态相量概念为每个单独的阶段建立 SST 的 PCPH 模型。与其他 PBC 方法相比,IDA-PBC 提供了额外的自由度来求解偏微分方程。根据每个阶段控制器设计的目标,获得系统的期望平衡点。闭环系统性能实现恒定输出直流母线电压和单位输入功率因数的调节。整个系统的大信号仿真结果验证了为获得控制器而引入的简化,并验证了所提出的控制器。控制器的稳健性通过 20% 的负载扰动和 10% 的输入扰动得到证明。为了验证所提出的方法及其有效性,使用 Opal-RT 和 dSPACE 模拟器进行硬件在环仿真。
之所以将其称为汉密尔顿模拟算法,是因为它类似于一类非常重要的量子算法,这些算法采用汉密尔顿量 H 的经典描述、时间 t、输入状态 | θ ⟩ 和输出(近似值)e − iHt | θ ⟩ 。这是我们所知的量子计算最重要的应用之一。这与 LMR 算法的区别在于,汉密尔顿量以量子形式提供。
使用一个充分理解的量子系统模拟另一个不太了解的量子系统的想法具有悠久的历史[1]。随着量子信息技术的最新发展,它吸引了许多研究领域。在核和粒子物理学区域,量子模拟吸引了显着但仍在增长的研究兴趣[2-42],因为它的潜力避免了符号问题,从而阻碍了传统的数值方法来计算构成标准模型基础的规范理论的实时动力学。仪表理论是相对论量子场理论在局部量规传输下不变的。局部规格不变性在近期量子计算机上有效,准确地模拟量规理论带来了许多挑战。在许多哈密顿的晶格仪理论中,例如Kogut-susskind Hamiltonian [43],量子链接模型[44,45]和循环 - 弦乐 - 哈德隆公式[46 - 48],相互作用是局部的,并非所有与物理状态相对应的局部自由度。只有满足当地仪表不变性(高斯定律)的状态是物理的。结果,量子硬件中的噪声或量子算法所构图(例如Trotterterization误差)可能会导致模拟中的非物理结果。许多通用误差缓解技术,例如零噪声CNOT外推[49 - 51]不足以完全恢复物理结果,因为算法的门忠诚度和系统误差有限[10]。有许多研究试图解决这个问题,例如整合了高斯定律(例如,参见参考文献[52,53]),添加了违反规格的惩罚项[54 - 61],使用动态驱动器和量子控制的不同规格选择(所谓的“ dy-Namical Declopling” [62]),使用对称性保护[63]和命中后[64],以及
引言 — 对称性是自然界的一个重要方面,在物理学中起着基础性的作用 [1,2]。诺特定理指出,汉密尔顿量的对称性与相关物理系统中的守恒量相对应 [3]。汉密尔顿量的对称性表明存在超选择规则 [4,5]。在量子计算和信息领域,对称性可以指示资源的存在或缺乏 [6],并且它有助于提高变分量子算法的性能 [7-10]。通过消除与守恒量相关的自由度,对称性的识别可以简化计算——这是诺特定理的核心。这使得对称性在物理学中非常有用。量子计算是一个相当年轻的研究领域。量子计算机最初作为图灵机的量子力学模型 [ 11 ] 被提出,其魅力在于有可能超越经典计算机。量子计算机最明显的优势在于其计算背后固有的物理原理,包括叠加和纠缠等非经典特性。随着希尔伯特空间规模的扩大,量子系统的经典模拟很快变得难以处理,需要指数级增长的比特来探索多个量子比特自然占据的状态空间。直观地说,这些计算机的量子力学性质允许以直截了当的方式模拟量子系统(参见 [ 12 ] 及其参考文献)。一个相关的例子是哈密顿模拟 [ 13 ],它引起了该领域的浓厚兴趣 [ 14 – 17 ]。已经做了大量工作来理解如何在量子硬件上模拟这些动态,以便有效地实现它们;然而,据我们所知,目前还没有可以在量子计算机上测试汉密尔顿对称性的算法,尽管以这种方式模拟汉密尔顿量和识别汉密尔顿量的对称性都被认为是至关重要的。在本文中,我们给出了量子算法来测试汉密尔顿量演化是否关于离散有限群的作用对称。该性质通常被称为演化的协方差 [18]。如果演化是对称的,那么汉密尔顿量本身也是对称的,因此我们的算法可以测试汉密尔顿对称性。此外,我们表明,对于具有可有效实现的幺正演化的汉密尔顿量,我们可以在量子计算机上有效地执行我们的第一个测试 [17]。这里的“有效”是指在 100 秒内完成计算所需的时间。
在一次非凡的历史事故中,托米塔(Tomita)在1967年的巴吞鲁日会议上分发了他的预印本,在同一会议上,哈格宣布了公共条件。Masamichi Takeaki参加了Baton Rouge会议。不久后,他完成了模块化理论,并通过KMS条件来表征模块化群。