量子假体性在许多量子信息的许多领域中都发现了应用,从纠缠理论到混沌量子系统中的乱拼图现象模型,以及最近在量子cryp-forgraphy的基础上。kretschmer(TQC '21)表明,即使在一个没有经典的单向功能的世界中,伪随机状态和伪单位都存在。到今天为止,所有已知的构造都需要经典的加密构建块,这些构建块本身就是单向函数存在的代名词,并且在逼真的量子硬件上实施也很具有挑战性。在这项工作中,我们寻求同时在这两个方面取得进步,这是通过将量子伪随机与古典密码学脱在一起的。我们引入了一个称为哈密顿相状态(HPS)问题的量子硬度假设,这是解码随机瞬时Quantum quantum多项式时间(IQP)电路的输出态的任务。汉密尔顿相状的状态只能使用Hadamard大门,单量子Z旋转和CNOT电路生成非常有效的生成。我们表明,我们的问题的硬度减少到了最差的概率版本,我们提供了证据表明我们的假设是完全量子的。意思是,它不能用于构建单向功能。我们还显示了信息的硬度,当仅通过证明我们的集合的近似t-deSign属性可用时,就可以使用信息硬度。在此过程中,我们分析了伪元单位的天然迭代构建,类似于JI,Liu和Song的候选人(Crypto'18)。最后,我们证明了我们的HPS假设及其变体使我们能够有效地构建许多假量子原始原始,从伪随机状态到量子伪enentangremprement,到pseudorandom limitories,甚至是原始词,例如与Quan-tum-tum tum tum tum tum tum tum tum tum tum tum keys。