TDC.Leenay:原代 T 细胞是一种很有前途的治疗性基因组编辑细胞类型,因为它们可以在体外有效地进行工程改造,然后转移到患者体内。该数据集包括对来自 15 名供体的原代 CD4+ T 细胞进行 CRISPR-CAS9 敲除实验的 DNA 修复结果 [ 82 ]。对于来自 553 个基因的 1,521 个独特基因组位置中的每一个,都提供了 20 个核苷酸的指导序列以及 3 个核苷酸的 PAM 序列。预测包括 5 个修复结果:插入的 indel 读取分数、平均插入长度、平均删除长度、indel 多样性、移码修复结果分数。建议的数据拆分:随机拆分;评估:MAE;单位:长度为 #、分数为 %、多样性为位;许可证:CC BY 3.0。
胞嘧啶碱基编辑器和腺嘌呤碱基编辑器(ABE)可以可预测地校正点突变,并且独立于CAS9诱导的双链DNA断裂(这会导致实质性的indel形成)和同源性指导的修复(通常会导致较低的编辑效率)。在此,我们在成年小鼠中表明,在RPE65基因中,态慢性病毒的下视网膜下注射表达ABE和单一指导RNA,靶向从RPE65基因进行的无义突变纠正了致病性突变,可纠正效率高达29%的效率,并在indel和oft oft oftarget的突变中均具有最小的效率,但均具有29%的效率,并且是不可或缺的效率。主题。ABE处理的小鼠显示了恢复的RPE65表达和类视黄素异构酶活性,以及视网膜和视觉功能的接近正常水平。我们的发现激发了对
样本 PAM 目标序列 Indel WT TTGC TTTC TCCAGTGACCTAAAAGACGATACA ATGGTA #38 TTGCTTTCTCCAGTGACCTAAAA--------ATGGTA -9 #38 TTGCTTTCTCCAGTGACCTAAAA-------CAATGGTA -7 GTCATCATT-GATTCA TA -3 #77 TTGCTTTCTCCAGTGACCTAAAA-------CAATGGTA -7 #86 TTGCTTTCTCCAGTGACC-----------TGGTA -15 #88 TTGCTTTCTCCAGTGACCTAA---------CAATGGTA-9-GTCTC-TA-TT-CA GGTA -8
胞嘧啶碱基编辑器和腺嘌呤碱基编辑器 (ABE) 可以可预测地纠正点突变,并且不受 Cas9 诱导的双链 DNA 断裂(导致大量插入/缺失形成)和同源定向修复(通常导致低编辑效率)的影响。本文,我们在成年小鼠中表明,视网膜下注射表达 ABE 的慢病毒和针对 Rpe65 基因中新生无义突变的单向导 RNA 可以纠正致病突变,效率高达 29%,并且插入/缺失和脱靶突变的形成最少,尽管没有典型的 NGG 序列作为原间隔区相邻基序。经 ABE 处理的小鼠显示恢复的 RPE65 表达和类视黄酸异构酶活性,以及接近正常水平的视网膜和视觉功能。我们的发现促使进一步测试 ABE 以用于
查看项目的详细结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22结果详细信息:概述(板视图)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23结果详细信息:Indel频率图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24个结果详细信息:控制对齐的供体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25结果详细信息:测序轨迹。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26
摘要 本研究利用CRISPR/Cas9核糖核蛋白(RNP)复合体系统对康乃馨乙烯(ET)生物合成基因[1-氨基环丙烷-1-羧酸(ACC)合成酶1(ACS1)和ACC氧化酶1(ACO1)]进行编辑。首先,验证靶基因(ACS1和ACO1)的保守区域,以生成不同的单向导RNA(sgRNA),然后使用体外切割试验验证sgRNA特异性切割靶基因的能力。体外切割试验表明,sgRNA在切割各自的靶区域方面具有很高的效率。将sgRNA:Cas9复合物直接递送到康乃馨原生质体中,并对原生质体中的靶基因进行深度测序。结果表明,sgRNA 适用于编辑 ET 生物合成基因,因为 ACO1 的突变频率范围为 8.8% 至 10.8%,ACS1 的突变频率范围为 0.2–58.5%。在对用 sgRNA:Cas9 转化的原生质体产生的愈伤组织中的目标基因进行测序时,在 ACO1 中发现了不同的 indel 模式(+ 1、- 1 和 - 8 bp),在 ACS1 中发现了不同的 indel 模式(- 1、+ 1 和 + 11)。这项研究强调了 CRISPR/Cas9 RNP 复合物系统在促进康乃馨 ET 生物合成的精确基因编辑方面的潜在应用。关键词 愈伤组织,CRISPR/Cas9,乙烯生物合成基因,Indel 模式,体外裂解,原生质体
摘要:在 2016 年碱基编辑技术发展之前,基因组编辑技术通过在目标基因组位点引入双链 DNA 断裂 (DSB) 作为基因组编辑的第一步来发挥作用。这通常使用 Cas9(一种可编程的核酸内切酶)和一段称为向导 RNA (gRNA) 的 RNA 来实现,该 RNA 编码了 Cas9 将使用简单的 Watson-Crick-Franklin 碱基配对规则结合和切割的基因组位置。DSB 的细胞处理会产生多种基因组编辑产物,包括精确编辑结果以及插入和删除 (indel) 副产物。自 1990 年代基因组编辑领域成立以来,indel 与精确产物的高频率一直是该领域的长期挑战。在这里,我将介绍我的实验室为开发具有更高效率和精度的新基因组编辑方法所做的努力。其中包括开发新的碱基编辑器(BE)工具,以及提高依赖 DSB 方法的精度的新方法。
摘要 CRISPR-Cas9 广泛用于小鼠和大鼠的基因靶向。非同源末端连接 (NHEJ) 修复途径在受精卵中占主导地位,可有效诱导插入或缺失 (indel) 突变,从而在靶位点敲除基因,而通过同源定向修复 (HDR) 的基因敲入 (KI) 则难以产生。在本研究中,我们使用双链 DNA (dsDNA) 供体模板与 Cas9 和两个单向导 RNA,一个用于切割目标基因组序列,另一个用于切割 dsDNA 质粒的侧翼基因组区域和一个同源臂,在 G0 幼崽中产生 20-33% 的 KI 效率。 G0 KI 小鼠在一个靶位点携带 NHEJ 依赖的插入/缺失突变,该突变设计在内含子区域,而在另一个外显子位点携带 HDR 依赖的各种供体盒(例如 EGFP 、mCherry 、Cre 和感兴趣的基因)的精确 KI,这些供体盒的长度从 1 到 5 kbp 不等。这些发现表明,这种由 CRISPR-Cas9 系统介导的 NHEJ 和 HDR 组合方法有助于在小鼠和大鼠中高效、精确地 KI 质粒 DNA 盒。
过去几千年来,传统育种已成功选育出有益的食品、饲料和纤维作物特性。上个世纪,技术取得了重大进步,特别是在标记辅助选择和诱导遗传变异的产生方面,包括过去几十年通过突变育种、基因改造和基因组编辑取得的进步。虽然传统品种开发和转基因基因改造的监管框架已广泛建立,但许多地区缺乏或仍在制定基因组编辑的监管框架。特别是,基因组编辑植物中缺乏“外来”重组 DNA,并且由此产生的 SNP 或 INDEL 与传统育种中的 SNP 或 INDEL 难以区分,这对制定新立法提出了挑战。如果基因组编辑和其他新型育种技术的产品不具有转基因,并且可以通过传统方法产生,我们认为,应用对传统育种和新型食品已经存在的同等立法监督是合乎逻辑和相称的。本综述分析了传统植物育种活动中可选择的自发和诱发遗传变异的类型和规模。它提供了一个基准,可以据此判断基因组编辑技术或其他反向遗传方法带来的遗传变化是否确实与使用传统植物育种方法经常发现的变化相当。
高效的基因转换系统有可能促进使用实验室小鼠研究复杂的遗传性状,如果以“基因驱动”的形式实施,则可以限制野生啮齿动物种群造成的生物多样性丧失和疾病传播。我们之前表明,在雌性小鼠生殖系中,这种在 CRISPR/Cas9 双链 DNA 断裂 (DSB) 序列后从杂合子到纯合子的基因转换系统是可行的。然而,在雄性生殖系中,所有 DSB 都通过末端连接 (EJ) 机制修复,形成“插入/缺失”(indel) 突变。这些观察结果表明,将 Cas9 表达的时间与减数分裂 I 同时发生对于有利于同源染色体排列和染色体间同源定向修复 (HDR) 机制占主导地位的条件至关重要。在这里,我们使用 Spo11 基因座上的 Cas9 敲入等位基因,表明 Cas9 的减数分裂表达确实介导雄性和雌性生殖系中的基因转换。然而,雄性和雌性生殖系中 HDR 和 indel 突变的频率都很低,这表明 Cas9 可能在 Spo11 基因座中表达水平太低,无法有效形成 DSB。我们认为,在减数分裂 I 早期启动的更强劲的 Cas9 表达可能会提高基因转换的效率,并进一步提高雄性和雌性小鼠的“超孟德尔”遗传率。