本论文 - 不受限制,由东田纳西州立大学数字共享中心的学生作品免费开放访问。它已被东田纳西州立大学数字共享中心的授权管理员接受并纳入电子论文和学位论文。欲了解更多信息,请联系 digilib@etsu.edu 。
摘要 — 近年来,室内定位系统 (IPS) 受到了机器人、导航、人机交互等许多研究领域的关注。然而,基于无源射频 (PRF) 技术的 IPS 仍然很少见。本文提出了一种基于接收信号强度 (RSS) 分布和高斯过程回归 (GPR) 的三维 (3D) IPS。传统的基于 RSS 的定位系统具有已知频率的发射器,而在提出的 PRf 机会信号 - 3D IPS (PRO-3DIPS) 中,系统既不部署新的发射器,也不使用任何发射器的先验知识。此外,PRO-3DIPS 集成了多个机会信号 (SoOP) 源、阴影、衰落,还可以捕获场景特征。在 3D 空间中基于 PRF 的 RSS 分布的数据收集和分析实现了 3D 定位功能。应用并比较了三种方法,以找到受场景影响最大的频带,以实现最佳定位性能,并用于估计 RSS 分布。 RSS 分布是通过在场景中测量固定网格上的 PRF 频谱来估计的。利用 RSS 分布,GPR 可以精确定位接收器位置。在实验场景中收集了 90 个网格位置的 RSS,每个位置有 100 个样本。实验结果表明,当
摘要:基于标签的视觉惯性定位是一种轻巧的方法,用于在室内建筑环境中启用低成本无人驾驶汽车(UAV)的自主数据收集任务。但是,在动态构造站点上找到最佳标签配置(即数字,大小和位置)仍然具有挑战性。这项工作提出了一种基于感知感知的遗传算法的标签位置计划者(PGA-TAPP),以考虑项目进度,安全要求和无人机的本地化性,以使用四维(4D)建筑信息模型(BIM)来确定最佳标签配置。所提出的方法通过在限制安装成本的同时最大化用户指定区域(ROI)中最大化的本地化,提供了一个4D计划。使用Fisher Information矩阵(FIM)量化本地化性,并封装在可通航网格中。实验结果显示了我们方法在寻找无人机室内室内站点上无人机定位的最佳4D标签计划计划中的有效性。doi:10.1061/jccee5。CPENG-5068。©2022美国土木工程师学会。
Solmaz S. Kia 是加州大学欧文分校 (UCI) 机械与航空航天工程副教授。她于 2009 年获得加州大学欧文分校机械与航空航天工程博士学位,并分别于 2004 年和 2001 年获得伊朗沙里夫理工大学航空航天工程硕士和学士学位。2009 年 6 月至 2010 年 9 月,她担任加州埃尔塞贡多 SySense Inc. 的高级研究工程师。她曾在加州大学圣地亚哥分校和加州大学欧文分校机械与航空航天工程系担任博士后职位。她曾于 2012-2014 年获得加州大学校长博士后奖学金,2017 年获得 NSF CAREER 奖,并于 2021 年获得 IEEE Control Systems Magazine 最佳论文奖。Kia 博士是 IEEE Sensors Letters、IEEE Open Journal of Control Systems、Automatica(IFAC 期刊)和 IEEE Transactions on Control of Network Systems 的副主编。她的主要研究兴趣广泛,包括分布式优化/协调/估计、非线性控制理论和概率机器人技术。
摘要:船舶内和船舶周围的空气质量受各种污染源的控制,这些污染源对于航运环境来说是独一无二的。这使得船上的生活和工作条件与城市或建筑物内的情况大不相同。为了深入了解这些差异,需要了解船上的趋势和绝对污染物量。但是,由于尺寸、重量或安全原因,通常无法安装参考仪器来监测 NO 2 、NO、O 3 、颗粒物和其他环境参数。因此,包含各种传感器的更紧凑的设备是一个不错的选择。但是,只有在充分了解这些传感器在航运环境中的行为和性能时,才有可能使用这些传感器。为了研究这一背景,我们被允许将一艘 36 年船龄的近岸作业船上的传感器测量结果与参考级仪器的测量结果进行比较。通过在几艘内陆船上组织的测量活动获得了传感器的额外行为信息。这篇文章表明,气体和颗粒物传感器记录的趋势是可靠的,但检测限不足、噪音较大、校准不完善和传感器误差会导致一些可靠性限制。
目的:本论文旨在描述如何设计和实施基于物联网的数字孪生框架,用于室内环境监测。为了实现研究目的,我们回答了以下研究问题。如何利用 AWS 创建数字孪生解决方案,以建立教室中的物理环境和虚拟环境之间的交互和融合?方法:作为一种研究方法,该研究进行了设计科学研究 (DSR)。DSR 是一种新方法,是增强工程教育研究方法的有效工具。结果:该研究详细描述了创建框架所需的步骤。该框架实现了特定位置的物理和虚拟环境之间的交互和融合。意义:该研究有助于拓宽对使用物联网 (IoT)、数字孪生 (DT) 和亚马逊网络服务 (AWS) 的知识。该研究为未来的研究提供了参考数据和可依托的框架。研究局限性:由于时间限制,研究的范围和局限性仅限于参与公司 Knowit 提供的技术。 Knowit AB 是一家瑞典 IT 咨询公司,为公司和组织提供数字化转型和系统开发服务。该研究旨在创建基于 AWS 的 IoT 框架,而不是改进数字孪生概念。该框架在延雪平实施
目的:本论文旨在描述如何设计和实施基于物联网的数字孪生框架,用于室内环境监测。为了实现研究目的,回答了以下研究问题。如何利用 AWS 创建数字孪生解决方案,以建立教室中的物理环境与虚拟环境之间的交互和融合?方法:作为一种研究方法,该研究进行了设计科学研究 (DSR)。DSR 是一种新方法,它是增强工程教育研究方法的有效工具。结果:该研究详细描述了创建框架所需的步骤。该框架实现了特定位置的物理环境和虚拟环境之间的交互和融合。意义:该研究有助于拓宽对使用物联网 (IoT)、数字孪生 (DT) 和亚马逊网络服务 (AWS) 的知识。该研究为未来研究提供了参考数据和可依托的框架。研究限制:由于时间限制,研究范围和限制仅限于参与公司 Knowit 提供的技术。Knowit AB 是一家瑞典 IT 咨询公司,为公司和组织提供数字化转型和系统开发服务。该研究旨在创建基于 AWS 的物联网框架,而不是改进数字孪生概念。该框架在延雪平大学实施。这项工作还仅限于温度和光强度作为环境参数。关键词:亚马逊网络服务 (AWS)、云计算、数字孪生解决方案 (DT)、环境数据、环境监测传感器、IoT (物联网)、智能建筑。
几个世纪以来,室内二氧化碳 (CO 2 ) 在通风和室内空气质量 (IAQ) 的讨论中一直扮演着关键角色。这些讨论的重点已经发展到使用室内 CO 2 作为 IAQ 指标、使用 CO 2 作为示踪气体来估计通风率、基于 CO 2 浓度来控制室外空气通风以及 CO 2 对建筑物居住者的影响。最近,室内 CO 2 的测量已经在空气传播传染病的背景下进行了讨论。然而,室内 CO 2 的许多应用并未反映出对室内 CO 2 浓度、通风和 IAQ 之间关系的合理技术理解。一些应用在技术上存在缺陷,导致对室内 CO 2 重要性的误解。本立场文件基于 ASHRAE 长期参与这些主题的经验以及其成员和利益相关者的利益,讨论了室内 CO 2 在建筑通风和 IAQ 背景下的作用。文件中所述立场涉及使用 CO 2 作为室内空气质量和通风的衡量标准、CO 2 对建筑物居住者的影响、CO 2 浓度的测量、使用 CO 2 评估和控制室外空气通风以及室内 CO 2 与空气传播传染病的关系。该文件建议研究 CO 2 对居住者健康、舒适度和表现的影响以及室内 CO 2 浓度在建筑物运行中的应用,并制定 CO 2 浓度测量和实际应用指南。
摘要 由于缺乏可用的 GPS 信号,室内定位和微定位系统变得复杂。蓝牙和 WiFi 填补了这一空白,但这些系统在用户移动时难以保持准确性。使用平滑算法和运行 iBeacon 软件的均匀分布的 BLE 信标,搭配定制设计的 iOS 应用程序,在用户移动时可实现 2 米的精度。本文介绍了以下研究成果:1) 一种使用低成本 BLE 信标的新型室内定位和导航预测系统,当用户以步行速度移动时,其精度为 2.2 米;2) 一种通用室内微定位系统,可以轻松快速地部署到新环境中(数小时内);3) 5 种平滑算法的比较和性能分析;4) 一种架构模型,其他研究人员可以通过它扩展我们在室内定位和导航方面的工作。
宗教豁免申请说明:费城规定室内用餐场所必须接种 COVID-19 疫苗,但这并不适用于未接种疫苗但因虔诚的宗教信仰而反对接种疫苗的顾客,因此无法接种 COVID-19 疫苗(“宗教豁免”)。1 如果您的团体中有多名成员正在申请宗教豁免,则每个人都应提供自己的证明。商家可以选择不接受您在室内用餐的申请。商家可以对疫苗接种提出比市法律要求更严格的要求。如果您的申请未获批准,您可以要求外带或送货上门,并且您必须离开室内用餐场所。我的申请中必须包含哪些内容?1. 若要在提供或出售供现场食用或饮用的食物或饮料的场所用餐,您的宗教豁免申请必须包括您签署的证明的纸质副本,其中还必须包含以下内容: