在制药科学中,药物发现的一个关键步骤是识别药物-靶标相互作用 (DTI)。然而,只有一小部分 DTI 经过了实验验证。此外,通过传统的生化实验来捕捉药物和靶标之间的新相互作用是一个极其费力、昂贵且耗时的过程。因此,设计用于预测潜在相互作用的计算方法来指导实验验证具有实际意义,特别是对于从头情况。在本文中,我们提出了一种新算法,即拉普拉斯正则化的 Schatten p 范数最小化 (LRSpNM),用于预测新药物的潜在靶标蛋白和没有已知相互作用的新靶标的潜在药物。具体而言,我们首先利用药物和靶标相似性信息来动态地预填充部分未知的相互作用。然后基于相互作用矩阵低秩的假设,我们使用 Schatten p 范数最小化模型结合拉普拉斯正则化项来提高新药/新靶点案例的预测性能。最后,我们通过一种高效的交替方向乘子算法对 LRSpNM 模型进行数值求解。我们在五个数据集上评估了 LRSpNM,大量的数值实验表明 LRSpNM 比五种最先进的 DTI 预测算法具有更好、更稳健的性能。此外,我们对新药和新靶点预测进行了两个案例研究,这表明 LRSpNM 可以成功预测大多数经过实验验证的 DTI。
多模态异构数据,如结构磁共振成像 (MRI)、正电子发射断层扫描 (PET) 和脑脊液 (CSF),可通过提供有关退化脑部疾病(如阿尔茨海默病前驱期,即轻度认知障碍)的互补信息,有效提高痴呆症自动诊断的性能。有效地整合多模态数据仍然是一个具有挑战性的问题,尤其是当这些异构数据由于数据质量差和患者退出而不完整时。此外,多模态数据通常包含由不同扫描仪或成像协议引起的噪声信息。现有方法通常无法很好地处理这些异构且嘈杂的多模态数据以进行脑痴呆症自动诊断。为此,我们提出了一种高阶拉普拉斯正则化低秩表示方法,使用逐块缺失的多模态数据进行痴呆症诊断。对来自真实阿尔茨海默病神经影像学计划 (ADNI) 队列的 805 名受试者(具有不完整的 MRI、PET 和 CSF 数据)对所提出的方法进行了评估。实验结果表明,与最先进的方法相比,我们的方法在脑疾病分类的三个任务中是有效的。