从使用 248-193 nm (4.8-6.4 eV) 的深紫外 (DUV) 光刻技术转变为使用 13.5 nm (92 eV) 的极紫外 (EUV) 光刻技术,这意味着光与光刻胶薄膜相互作用的方式发生了根本性的变化。虽然 DUV 光通过共振激发选择性地激活光刻胶材料中的化学键,但 EUV 的高光子能量本质上会触发电离事件,但该过程仅具有较低的局部选择性。此外,初级光电离事件会导致光刻胶薄膜中发生复杂的辐射化学反应。为了设计适用于 20 nm 以下特征尺寸成像的强效 EUV 光刻胶材料,了解并最终控制用 EUV 辐射成像的光刻胶膜中的物理和化学过程至关重要。本文使用气相光电子光离子巧合 (PEPICO) 光谱研究了甲基丙烯酸叔丁酯 (TBMA) 的解离光电离,TBMA 是一种广泛用于化学放大光刻胶 (CAR) 聚合物的单体单元。通过只关注 EUV 光子与光刻胶相互作用的初始步骤,可以降低化学的复杂性,并获得如果没有这种孤立视角就无法获得的深刻基本见解。这些见解与进一步的补充实验相结合,是解密 EUV 光刻中的完整化学和物理过程的基本组成部分。
1)N。Gerges,C。Petit-Etienne,M。Panabière,J。Boussey,Y。Ferrec,C。Gourgon;优化的紫外线灰度工艺,用于应用于光谱成像仪的高垂直分辨率; J. Vac。SCI。 技术。 b 39(2021); doi:10.1116/6.0001273SCI。技术。b 39(2021); doi:10.1116/6.0001273
扫描电子显微镜(SEM)图像显示了INGAAS纳米线在Si上的选择性区域生长:垂直排列的纳米线在Si(111)底物上生长。纳米线之间的表面被SIO 2纤维覆盖。纳米线的直径为90 nm,高度为760 nm。
几年前,DSA 被提议作为一种有前途的互补图案化选择。DSA 基于一类称为嵌段共聚物 (BCP) 的分子的自组装特性。在适当的情况下,这些材料在涂覆到晶圆上时会发生微相分离。这会产生具有 5-30 纳米特征的规则纳米尺寸图案。可以通过调整聚合物的成分及其尺寸来设计图案。可以使用线/空间或孔的预图案进一步引导(定向)该组装 - 这两种结构是半导体行业感兴趣的。最终图案的间距将比导向模板小得多。因此,DSA 是一种非传统的自下而上的技术,可以提高图案的密度和分辨率。
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
主要应用 • 通过 DLW 和 2PP 进行快速非接触式原型制作 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
随着极紫外 (EUV) 光刻技术进入大批量生产,半导体行业已将光刻波长匹配的光化图案化掩模检测 (APMI) 工具视为 EUV 掩模基础设施的主要空白。现在,已经开发出一种光化图案化掩模检测系统来填补这一空白。结合开发和商业化 13.5nm 波长光化空白检测 (ABI) 系统的经验以及数十年的深紫外 (DUV) 图案化掩模缺陷检测系统制造经验,我们推出了世界上第一个高灵敏度光化图案化掩模检测和审查系统 ACTIS A150(ACTinic 检测系统)。生产此 APMI 系统需要开发和实施新技术,包括高强度 EUV 源和高数值孔径 EUV 光学器件。APMI 系统具有高分辨率、低噪声成像,对缺陷具有极高的灵敏度。它已证明能够检测出印刷晶圆上估计光刻影响为 10% CD 偏差的掩模缺陷。
主要应用 • 通过 DLW 进行快速非接触式原型设计 • 微系统技术中的光学应用 • 用于湿法和干法蚀刻工艺的蚀刻掩模 • 用于电镀的模具 • 用于印章制造/模板制造的模具
与往常一样,主题演讲概述了半导体行业以及相关微纳米技术领域的发展方向和趋势。去年的重点是限制当前和未来人工智能应用的过度能耗,而 Serge Nicoleau(意法半导体)的主题演讲将这一主题扩展到半导体行业工艺的总体可持续性,即减少资源消耗并日益避免使用有毒或对环境有害的物质,如 PFAS(所谓的永恒化学物质)。Kagawa-san(佳能)、Sebastian Dauvé(CEA-LETI)和 Kurt Ronse(IMEC)的其他主题演讲涉及纳米压印光刻的现状和前景、CEA-LETI 的半导体研究计划(FAMES)和 EUV 光刻。 Kurt Ronse 的贡献尤其预测了到 2040 年纳米技术的预期发展。虽然半导体行业的领先公司即将推出具有技术节点 N2 的高端工艺(例如,最密集布线层的导体轨道宽度约为 11nm),但节点 A1 中只能实现约 6nm(!)的线宽(根据 2040 年的当前路线图)。
1) 新加坡南洋理工大学电气与电子工程学院,50 Nanyang Avenue 639798,新加坡。2) 韩国机械材料研究所纳米融合机械研究部,韩国大田儒城区 34103,韩国。3) 德克萨斯大学阿灵顿分校电气工程系,德克萨斯州阿灵顿 76019,美国。4) 伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系和 Holonyak 微纳米技术实验室,伊利诺伊州厄巴纳 61801,美国 关键词。金属辅助化学蚀刻;多孔 Ge;抗反射;