使用选择性5-羟色胺(5-HT)再摄取抑制剂(SSRI)的治疗通常与早期发作和禁用中断综合征有关,其机制的调查很少。在这里,我们确定了对SSRI Paroxetine中断的5-HT神经化学的影响。paroxetine被反复给小鼠(每天一次,与盐水对照相比12天),然后持续或停止长达5天。虽然5-HT和/或其代谢产物5-HIAA的脑组织水平倾向于在连续的帕罗西汀期间降低,但在中断后,尤其是在海马中,水平升高了。连续帕罗西汀升高的海马细胞外5-HT,这种作用降低了盐水控制水平,对中断。然而,连续的帕罗西汀降低了去极化(高钾)诱发的5-HT释放,但在结束后的对照中有所增加。在连续的帕罗西汀期间,细胞外海马5-HIAA也会减少,并在结束后对照中增加。接下来,免疫组织化学实验发现,帕罗西汀停用增加了中脑5-HT(TPH2阳性)神经元中的C-FOS表达,从而增加了令人难以置信的5-HT系统的证据。通过5-HT 1A受体拮抗剂的给药概括了后一种效应,尽管基因表达分析无法确认paroxetine concontination后5-HT 1A自感受器的表达改变。总而言之,本研究报告了证据表明,在一系列实验中,SSRI中断会触发5-HT神经元的反弹激活。最后,在行为实验中,帕罗西汀停用增加了焦虑样行为,这与5-HT功能的量度部分相关。这种作用让人联想到与各种精神药物戒断状态相关的神经变化,这表明一种常见的统一机制。
引言发声的决定通常是生死攸关的问题,因为发声是同种特定之间的性和社会信号传导的重要媒介,但也可能无意中会宣传呼叫者的位置到窃听掠食者的位置。因此,许多因素影响了发声的决定,包括外部感觉和社会提示的存在,以及动物自身的内部状态和过去的经验。过去五十年来的工作已经确立了中脑围栏灰色(PAG),作为所有哺乳动物发声的必要大门(Fenzl和Schuller,2002; Jurgens,1994; Juhrgens; Juhrgens,2002; Jurgens,2009; Jurgens,2009; subramanian; subramanian; subramanian ef suida; suida; suiDA; egi; Al。,2019年),人们认为,前脑输入了PAG以上下文依赖的方式产生发声的产生。符合这个想法,包括皮质,杏仁核和下丘脑在内的前脑区域已与调节声音作为社会背景的函数有关(Bennett等,2019; Dujardin and Juyrgens,2006; Gao等,2019; Green等,2018; Gemba,1998年; Ma和Kanwal,2014年;Notably, although electrical or pharmacological activation of various forebrain regions can elicit vocalizations ( Ju¨rgens, 2009 ; Ju¨rgens and Ploog, 1970 ; Ju¨rgens and Richter, 1986 ), these effects depend on an intact PAG ( Ju¨rgens and Pratt, 1979 ; Lu and Ju¨rgens, 1993 ; Siebert and Ju¨rgens, 2003 ), suggesting that the PAG充当下降前脑控制发声的基本枢纽。尽管PAG的中心是
脑类器官是体外培养的三维 (3D) 聚集体和模型,它使我们能够深入研究不为人知的早期人类大脑发育和人类特有的神经系统疾病特征。在过去的几年中,科学界一直致力于建立生成代表整个大脑或特定大脑区域(包括皮质、中脑、丘脑、下丘脑、内侧神经节隆起、脉络丛、脑干和小脑)的脑类器官的方案 [ 1 ]。此外,通常无法通过常规方案分化的非外胚层细胞类型,如小胶质细胞和血管内皮细胞,也可通过转基因或共培养方法成功地引入脑类器官 [ 1 – 3 ]。尽管近年来 3D 培养系统取得了快速发展,但脑类器官如何接近模拟人体原始组织生理学仍然是一个“热门”话题。由于脑类器官由多种细胞类型组成,单细胞转录组分析通常用于研究细胞类型的组成和脑类器官中每个细胞的分子特征。公共存储库(如 NCBI 基因表达综合数据库 (GEO))中单细胞转录组数据的数量不断增加,引发了各种二次合成分析,这些分析解决了方案间差异以及脑类器官与原始人脑的相似性和差异性。早期研究使用了来自脑类器官和人类胎儿脑样本的数十万个细胞,并证明了细胞应激的升高、实验验证和脑类器官区域身份的指定 [4-7]。Werner 和 Gillis 领导的一项新发表的元研究表明,原始发育中的人类大脑和脑类器官之间存在共表达网络
母体免疫失调是自闭症谱系障碍 (ASD) 的产前风险因素。重要的是,炎症和代谢压力之间存在临床相关联系,可导致异常的细胞因子信号传导和自身免疫。在这项研究中,我们研究了母体自身抗体 (aAbs) 破坏代谢信号传导并诱导暴露后代大脑神经解剖学变化的可能性。为此,我们根据母体自身抗体相关 ASD (MAR-ASD) 的临床现象开发了大鼠母体 aAb 暴露模型。在确认大鼠母体产生 aAb 并将抗原特异性免疫球蛋白 G (IgG) 转移到后代后,我们纵向评估了后代行为和大脑结构。当允许 MAR-ASD 大鼠后代与新伴侣自由互动时,幼崽超声波发声减少,社交游戏行为明显减少。此外,在另一组动物中,在出生后第 30 天 (PND30) 和 PND70 天进行的纵向体内结构磁共振成像 (sMRI) 显示,总体和局部脑容量存在性别差异。在 MAR-ASD 后代中,不同区域的治疗特定影响似乎集中在中脑和小脑结构上。同时,收集体内 1 H 磁共振波谱 (1 H-MRS) 数据以检查内侧前额叶皮质中的大脑代谢物水平。结果表明,与对照动物相比,MAR-ASD 后代的胆碱化合物和谷胱甘肽水平降低,同时牛磺酸水平升高。总体而言,我们发现暴露于 MAR-ASD aAbs 的大鼠表现出行为、大脑结构和神经代谢的改变;让人联想到在临床 ASD 中观察到的发现。
摘要 我们的大脑不断对感官输入做出预测,并将其与实际输入进行比较,通过大脑区域的层次结构传播预测误差,随后更新对世界的内部预测。然而,预测编码的基本特征、层次深度的概念及其神经机制仍未得到充分探索。在这里,我们结合功能性磁共振成像 (fMRI) 和高密度全脑皮层电图 (ECoG),在听觉局部-全局范式中研究了狨猴的预测听觉处理的层次深度,其中刺激的时间规律被设计为两个层次。预测误差和预测更新被视为对听觉不匹配和遗漏的神经反应。使用 fMRI,我们确定了听觉通路上的层级梯度:中脑和感觉区域代表局部、较短时间尺度的预测处理,随后是联想听觉区域,而前颞叶和前额叶区域代表整体、较长时间尺度的序列处理。互补的 ECoG 记录证实了皮质表面区域的激活,并进一步区分了预测误差和更新信号,它们分别通过假定的自下而上的 γ 和自上而下的 β 振荡传输。此外,由于输入缺失而引起的遗漏反应仅反映了层级预测编码框架所特有的两个预测信号水平,证明了听觉、颞叶和前额叶区域自上而下的层级预测过程。因此,我们的研究结果支持分层预测编码框架,并概述了如何使用神经网络和时空动态来表示和安排狨猴大脑中听觉序列的分层结构。
背景:在啮齿动物,帕金森氏症和脊髓损伤的啮齿动物模型中,已经研究了中脑运动区域(MLR)的深脑刺激(DB)。临床DBS试验已针对帕金森氏病患者作为步态功能障碍的治疗疗法密切相关的小儿核核,报告的结果混合了。最近的研究表明,优化MLR目标可以提高其有效性。目的:我们试图确定猪中间脑中的立体定位靶向和DBS在解剖学上与以前鉴定为其他物种中MLR相似的区域是否可以启动和调节持续的运动,这是迈向产生大型gait的大动物神经化模型的一步。方法:我们使用EMG记录,关节运动学和速度测量值对Yucatan Micropigs中的Medtronic 3389电极植入了假定的MLR结构中,以表征该区域急性DBS的运动作用。结果:MLR DBS在自由移动的微孔中启动并增强了运动。有效的运动部位以楔形核和刺激频率控制的运动速度和步进频率为中心。靶向刺激诱发了防御性和厌恶行为,这些行为排除了动物的运动。结论:猪似乎具有MLR,可用于模拟该步态促进中心的神经调节。©2021 Elsevier Inc.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。这些结果表明,在与帕金森氏病,脊髓损伤或中风等状况相关的步态延迟的情况下,猪是指导未来临床研究的有用模型。
音乐是人类体验的文化普遍性,也是丰富的部分。然而,关于支持扩展的自然主义“现实世界”音乐刺激的处理和整合的常见大脑系统知之甚少。我们通过展示交响音乐的扩展摘录以及两种假刺激来检查这个问题,其中自然音乐条件的时间和频谱结构被破坏了,这些刺激被破坏了,向接受功能性的脑成像的非音乐参与者分析了同步的空间时代活动模式。我们发现,音乐可以同步双边听觉中脑和丘脑的听众的大脑反应,主要听觉和听觉协会皮层,额叶和顶壁皮层的右侧结构以及大脑的运动规划区域。与伪音乐控制条件相比,自然音乐的这些影响更大。非常明显的是,自然音乐条件下的下丘和内侧基因核中的受试者间同步也更大,这表明在听觉过程的这些早期阶段,同步不简单地由刺激的光谱特征驱动。在音乐聆听过程中的同步性增加也很明显,这在右半球额叶 - 顶部 - 顶部注意力网络和涉及运动计划的双边皮质区域也很明显。尽管这些大脑结构以前已经与音乐处理的各个方面有关,但我们的结果是第一个表明这些区域在持续时间持续的时间段内跟踪音乐刺激的结构元素。我们的结果表明,在处理扩展音乐序列期间,个体之间同步的层次分布式网络,并为复杂和生物学上显着的听觉序列的时间整合提供了新的见解。
母体免疫失调是自闭症谱系障碍(ASD)的产前危险因素。重要的是,炎症和代谢应激之间存在临床相关的联系,这可能导致细胞因子信号传导和自身免疫性异常。在这项研究中,我们检查了孕产妇自身抗体(AABS)破坏代谢信号传导并诱导暴露后代大脑中神经解剖学变化的潜力。为了实现这一目标,我们基于母体自身抗体相关的ASD(MAR-ASD)的临床现象开发了大鼠母体AAB暴露模型。确认大鼠大坝和特异性免疫球蛋白G(IgG)转移到后代后,我们纵向评估了后代行为和大脑结构。mar-asd老鼠后代在允许与新型伴侣自由互动时,表现出幼犬超声发声的减少,并且在社交行为中表现出明显的定义。此外,在产后第30天(PND30)和PND70在单独的动物中进行的纵向体内结构磁共振成像(SMRI)揭示了性别特异性差异。按区域划分的治疗特异性作用似乎在Mar-Asd后代的中脑和小脑结构上汇聚。同时收集了体内1小时磁共振光谱(1 H-MRS)数据,以检查内侧前额叶皮层中的脑代谢物水平。结果表明,与对照动物相比,含胆碱化合物和谷胱甘肽的水平显示出含胆碱化合物和谷胱甘肽的水平降低。总体而言,我们发现暴露于MAR-ASD AAB的大鼠行为,大脑结构和神经代谢物的改变。让人联想到在临床ASD中观察到的发现。
脑计划细胞普查网络 (BICCN) 于 2023 年 12 月 13 日在《自然》杂志上发布了《全鼠脑图谱》出版包(https://www.nature.com/collections/fgihbeccbd,2024 年 5 月 5 日访问)。这项单细胞转录组、表观基因组和空间转录组综合工作将小鼠脑中存在的不同神经元细胞类型的数量更新为惊人的总数,略多于 5300 种,揭示了它们的分子多样性与它们的相对位置一致。我们在此提出的问题是:我们能否解释如此多不同类型的细胞是如何产生和定位的?这个问题与另一个问题相关:我们是否有形态模型允许在相对位置和神经元类型规范方面将这种程度的多样性相关联?令人惊讶的是,答案是可能的,而且几乎是肯定的。 BICCN 出版物隐含地使用了 Herrick 的传统柱状脑模型([ 1 ];图 1 a-d),可能是 Swanson 的修改版([ 2 , 3 ];图 1 e),或 Dong [ 4 ] 在 Allen 研究所的成年小鼠大脑图谱 [mouse.brain-map.org] 中使用的模型。该模型将端脑、间脑、中脑、后脑和脊髓视为主要分区(五个喙尾小泡;图 1 a)。在该模型中,Herrick 的最小单位由四个功能实体表示(脑干和脊髓中定义的躯体运动、内脏运动、内脏感觉和躯体感觉柱:Sm、Vm、Vs、Ss;图 1 a、d)。本文作者将它们外推到前脑(即间脑的 Eth、Dth、Vth、Hth;端脑的 Hi、Pir、Str、Se;图 1 a-c 中统一颜色的代码)。请注意,前脑柱可能执行与后脑不同的功能,尽管间脑在功能上被解释为脑干的延续。总的来说,这就构成了 5 个囊泡 × 4 个柱 = 20 个柱状单元,它们应该产生最近发现的 5300 种神经元类型(平均每柱 265 种细胞类型)。
除了影响下丘脑和其他与生殖有关的脑区外,卵巢类固醇还对整个脑部、血清素通路、儿茶酚胺能神经元、基底前脑胆碱能系统以及海马结构(一个与空间记忆和陈述性记忆有关的脑区)产生广泛影响。因此,卵巢类固醇对情感状态和认知有可测量的影响,对痴呆症有影响。本综述讨论了两种作用;这两种作用似乎都涉及卵巢激素的基因组作用和非基因组作用的结合。首先,血清素系统的调节似乎与中脑缝中雌激素和孕激素敏感神经元的存在以及血清素神经元投射轴突的脑区中可能存在的非基因组作用有关。其次,卵巢激素在雌性大鼠 4 至 5 天的发情周期内调节海马 CA1 区突触的周转。雌二醇诱导新的兴奋性突触形成,涉及 N-甲基-D-天冬氨酸 (NMDA) 受体,而这些突触的下调涉及细胞内孕激素受体。一种新的快速放射免疫细胞化学方法通过标记和量化所涉及的特定突触和树突分子,使突触形成的证明成为可能。虽然 NMDA 受体激活是突触形成的必要条件,但抑制性中间神经元可能发挥关键作用,因为它们表达核雌激素受体-α (ER)。雌激素也可能局部调节突触形成的兴奋性锥体神经元中突触接触位点的事件。事实上,最近的超微结构数据显示,在海马主细胞、轴突、轴突末端和神经胶质突起上的部分树突棘内存在核外 ER 免疫反应。特别是,ER 在树突中的存在与突触形成的模型相一致,在该模型中,树突的假足长出以寻找新的突触接触,雌激素通过第二信使系统调节局部转录后事件。
