在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
摘要:半导体需要稳定的掺杂才能应用于晶体管、光电子学和热电学。然而,这对于二维 (2D) 材料来说是一个挑战,现有的方法要么与传统的半导体工艺不兼容,要么会引入时间相关的滞后行为。本文我们表明,低温 (<200 ° C) 亚化学计量 AlO x 为单层 MoS 2 提供了稳定的 n 掺杂层,与电路集成兼容。这种方法在通过化学气相沉积生长的单层 MoS 2 晶体管中实现了载流子密度 >2 × 10 13 cm − 2、薄层电阻低至 ∼ 7 k Ω / □ 和良好的接触电阻 ∼ 480 Ω · μ m。我们还在这个三原子厚的半导体上实现了创纪录的近 700 μ A/μ m (>110 MA/cm 2 ) 的电流密度,同时保持晶体管的开/关电流比 >10 6 。最大电流最终受自热 (SH) 限制,如果器件散热效果更好,最大电流可能超过 1 mA/μ m 。这种掺杂的 MoS 2 器件的电流为 0.1 nA/μ mo,接近国际技术路线图要求的几个低功率晶体管指标。关键词:2D 半导体、电流密度、掺杂、高场、自热、MoS 2 、Al 2 O 3 T
摘要 二硫化钼 (MoS 2 ) 等二维 (2D) 纳米材料由于其出色的非线性光学响应而引起了广泛关注。在本研究中,我们使用模式不匹配的泵探测配置研究了 MoS 2 纳米薄片分散体中的热透镜形成。观察泵浦和探测光束强度模式可以直观地了解光热透镜形成的时间演变。利用热透镜光谱技术研究了 MoS 2 纳米薄片浓度对分散体热光特性的影响。此外,还提出了一种基于热光折射的测量热透镜尺寸的技术。热透镜区域尺寸随泵浦功率的增加而增加。观察到的热透镜调制被用于演示“常开”全光开关,该开关显示出泵浦光束对输出光束信号的出色调制。
[A] I. J.GómezCeitecMasaryk University Kamenice 5,625 00 Brno,捷克共和国[C] V.Sebastián博士,Aragón(INA)的纳米科学研究所J.Santamaría教授(INA)和化学与环境工程系的纳米阶级研究所,以及50018 Zaraga,Spain ebro,Spain eBro,Spain eBro,耶稣。生物材料和纳米医学(Ciber-BN)28029马德里,西班牙[A]I. J.GómezCeitecMasaryk University Kamenice 5,625 00 Brno,捷克共和国[C] V.Sebastián博士,Aragón(INA)的纳米科学研究所J.Santamaría教授(INA)和化学与环境工程系的纳米阶级研究所,以及50018 Zaraga,Spain ebro,Spain eBro,Spain eBro,耶稣。生物材料和纳米医学(Ciber-BN)28029马德里,西班牙
摘要 基于 Kretschmann 的表面等离子体共振 (K-SPR) 传感器采用等离子体金 (Au) 层上的多层石墨烯和二硫化钼 (MoS 2 ) 结构进行乙醇检测。在这种配置中,最小反射率与 SPR 角度的 SPR 光谱用于确定灵敏度、检测精度和质量因数作为主要品质因数 (FOM)。石墨烯和 MoS 2 均用作混合检测层,以使用有限差分时间域 (FDTD) 增强乙醇传感性能。多层石墨烯/Au 和 MoS 2 /Au 传感器在 785 nm 光波长下的最大灵敏度分别为 192.03 ◦ /RIU 和 153.25 ◦ /RIU。在使用 K-SPR 技术进行材料表征方面,在金上化学气相沉积 (CVD) 生长的石墨烯厚度为 1.17 nm,在光波长为 670 nm 和 785 nm 时实折射率和虚折射率分别为 2.85、0.74 和 3.1、1.19。
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位
摘要:对未来电子应用的原子较薄的半导体对单层(1L)硫属(例如MOS 2)(例如化学蒸气沉积(CVD)生长)非常关注。然而,关于CVD生长的硒的电性能,尤其是Mose 2的报告很少。在这里,我们比较了CVD生长的1L和BiLayer(2L)Mose 2的电性能,并由子材料计的ALO X封顶。与1L通道相比,2L通道表现出约20倍较低的接触电阻(R C)和〜30倍的电流密度。r c通过ALO X封盖进一步降低> 5×,这可以提高晶体管电流密度。总体而言,2L ALO X盖的Mose 2晶体管(约500 nm的通道长度)可提高电流密度(在V DS = 4 V时约为65μM /μm),良好的I ON / I ON / I ON / I ON / I OFF> 10 6,R C为约60kΩ·μm。 1L设备的性能较弱是由于它们对处理和环境的敏感性。我们的结果表明,在不需要直接带隙的应用中,2L(或几层)比1L更可取,这是对未来二维电子产品的关键发现。关键字:丙象钼,单层,双层,接触电阻,晶状体效应晶体管,氧化物封盖,掺杂,2D半导体
铁电场效应晶体管 (FeFET) 因其良好的工作速度和耐用性而成为一种引人注目的非易失性存储器技术。然而,与读取相比,翻转极化需要更高的电压,这会影响写入单元的功耗。在这里,我们报告了一种具有低工作电压的 CMOS 兼容 FeFET 单元。我们设计了铁电 Hf 1-x Zr x O 2 (HZO) 薄膜来形成负电容 (NC) 栅极电介质,这会在少层二硫化钼 (MoS 2 ) FeFET 中产生逆时钟极化域的磁滞回线。不稳定的负电容器固有支持亚热电子摆幅率,因此能够在磁滞窗口远小于工作电压的一半的情况下切换铁电极化。 FeFET 的开/关电流比高达 10 7 以上,在最低编程 (P)/擦除 (E) 电压为 3 V 时,逆时针存储窗口 (MW) 为 0.1 V。还展示了强大的耐久性 (10 3 次循环) 和保留 (10 4 秒) 特性。我们的结果表明,HZO/MoS 2 铁电存储晶体管可以在尺寸和电压可扩展的非易失性存储器应用中实现新的机会。
摘要:半导体二维 (2D) 材料由于其丰富的能带结构和在下一代电子器件中的良好潜力而引起了广泛的研究关注。在本文中,我们研究了具有双栅极 (DG) 结构的 MoS 2 场效应晶体管 (FET),该结构由对称厚度的背栅极 (BG) 和顶栅极 (TG) 电介质组成。通过排除接触影响的四端电测量揭示了 DG-MoS 2 器件中厚度相关的电荷传输,并且还应用了 TCAD 模拟来解释实验数据。我们的结果表明,量子限制效应对 MoS 2 沟道中的电荷传输起着重要作用,因为它将电荷载流子限制在沟道的中心,与单栅极情况相比,这减少了散射并提高了迁移率。此外,温度相关的传输曲线表明,多层 MoS 2 DG-FET 处于声子限制的传输状态,而单层 MoS 2 表现出典型的库仑杂质限制状态。