摘要:X 射线计算机断层扫描 (CT) 已成为检测金属增材制造 (MAM) 部件内部缺陷(如孔隙度、夹杂物、未熔合等)的首选无损检测 (NDT) 方法。此外,由于质量标准的建立以及制造系统、加工路线和检测手段的成熟,这种制造技术在航空航天领域的应用也日益广泛。例如,欧洲空间标准化合作组织制定了一项特定标准(由欧洲航天局 (ESA) 协调),用于 AM 质量保证、加工和空间应用要求 (ECSS-Q-ST-70-80C),表明应特别对关键结构和功能部件进行 CT 检查。同样,大型 OEM(原始设备制造商)也制定了自己的标准,将 CT 视为关键部件的强制性 NDT 方法,但其他技术(如渗透检测 (PT)、数字射线照相术 (DR) 或目视检查 (VI))也被认为是确保部件质量所必需的。本文介绍了硬件鉴定中不同 NDT 的各种应用示例:CHEOPS 太空任务的钛支架;PROBA3 的铝螺旋天线;JUpiter ICy 卫星探测器任务 (JUICE) 的铝支架;或其他航空部件,如 Clean Sky 2 IADP 演示器的铝整流罩和 RACER 直升机的结构钛襟翼配件。上述案例不仅将从检查的执行情况进行分析,还将从专门为 AM 开发或适应这种新型制造技术的不同标准和要求的应用进行分析。
本文讨论了火箭电动机中固体推进剂的非破坏性测试(NDT)的复杂性,并强调了各种检查技术的重要性和演变。它解决了与不同推进剂类型相关的挑战以及缺陷检测的固有困难。通过强调数字方法和自动缺陷识别(ADR)的最新进步,该研究强调了NDT在确保火箭电机的安全性和有效性方面的关键作用,并向未来的技术趋势和研究需求指出。鉴于固体火箭电动机在航空航天和防御中的关键作用,它们的检查至关重要。传统方法(例如视觉检查(VI))对于识别表面缺陷(例如裂纹和脱键)至关重要,尽管它们仅限于表面异常。射线照相测试的进步,包括常规和数字X射线照相,已改善了内部缺陷的检测,例如空隙,孔隙率,异物或夹杂物或裂缝。使用计算的X射线照相(CR)和数字探测器阵列(DDA)的数字X射线照相,提供了出色的分辨率和更快的成像,这对于详细的检查而言是无价的。超声波测试(UT)具有工具性,脉冲回声和透射方法为内部不连续性和粘结完整性提供了见解。UT方法,尤其是通过传输,避免了耦合剂的污染,并且适合自动扫描。关键字:非破坏性测试(NDT);固体推进剂;缺陷检测;检查挑战;使用激光光检测表面和地下缺陷的剪切照片提供了实时反馈和定量分析,特别是用于检测剥离和不当粘附。工业计算机断层扫描(ICT)提供了高分辨率的三维成像,对于识别结构异常和确保推进剂完整性至关重要,尽管它受到高成本和运营复杂性的挑战。激光扫描热成像(LASST)生成详细的热图以识别缺陷和材料不一致,使其适合在制造过程中进行在线检查。NDT的最新进展包括为ADR集成人工智能(AI)和机器学习(ML),增强缺陷检测,减少人类错误以及支持预测性维护。但是,这些技术面临着诸如高成本,对专业技能的需求以及与现有方法集成的复杂性之类的挑战。NDT对固体推进剂的未来在于开发具有成本效益的方法,标准化程序和便携式设备以进行现场检查。拥抱AI和ML将进一步自动化并改善缺陷分析,从而确保固体火箭电机的更高安全性和性能标准。
人员认证航空工业协会于 1996 年批准 NAS 410(国家航空标准)作为行业标准。自 1997 年 12 月 31 日起,它取代了 MIL STD 410 E。NAS 410 级别 I、级别 II 和级别 III 培训和认证应由获得 NAS 410 级别 III 认证的人员在特定方法技术和产品上进行。 NAS 410 认证是向海外客户出口飞行硬件的强制性要求(例如:英国劳斯莱斯、法国空客、美国霍尼韦尔等),也是印度民航局 (DGCA) 对颁发无损检测方法能力证书 (COC) 的强制性要求,各政府监管机构的批准 DGCA 对无损检测的批准 在民用飞机上进行无损检测的人员,应从印度民航局 (DGCA) 获得颁发的能力证书 (COC)。民航要求 (CAR) 详细说明在第 2 节 - 适航系列“L”,第 xiv 部分,1992 年 1 月 20 日。修订版 2,2006 年 5 月 23 日。CAR 的本部分规定了颁发和更新能力证书的年龄、知识、资格、技能和医疗标准方面的要求。每六个月续期一次,费用为 2500 卢比。DGAQA 无损检测认证 对于军用飞机的无损检测,人员必须经过政府监管机构飞机质量保证局局长的批准。国际认证 NADCAP(国家航空
功能强大的计算机和可靠的成像技术的引入对传统的基于辐射的无损检测 (NDT) 技术产生了重大影响。特别是,图像数字化提供了存储经济性、通信效率和更快的检查和评估速度。发达国家的 NDT 实验室在辐射检测数据的数字化方面正在迅速发展。使用图像增强系统、成像板和平板探测器的新成像技术提高了焊缝、铸件、锻造复合材料和混凝土中表面和内部缺陷的可视化能力,揭示了通过辐射技术准确评估此类缺陷的新潜力。本出版物介绍了一种经济实惠、低成本的数字工业放射学 (DIR) 荧光透视系统的设计、开发和优化。它提供了构建经济可行、易于组装的 DIR 系统的指南,为感兴趣的成员国(包括发展中成员国)提供获取 DIR 技术的渠道。
• 电子束焊接 • 包覆 • 无损检测 • 铸造和热等静压 • 自动化和 I4.0 • 制造设计 • 工厂和工艺开发 • ICME:综合计算材料工程 • 净零碳技术 • 高温材料(RA 钢)
FWD是一种已安装的设备,可帮助均匀地分配负载。它用于NDT和评估高速公路,人行道和空气场的负载能力。从FWD收集的数据可用于确定在服务内路/道路的结构容量,以分析其性能分析。正在使用制造商提供的标准对数据进行分析。
ASME 美国机械工程师学会 BAM 德国联邦材料研究与测试研究所 CFR 美国联邦规章 COD 裂纹张开位移 CVI 近距离目视检查 DPI 着色渗透检查 DSM 异种金属焊缝 EPRI 电力研究机构 FMEA 故障模式影响分析 HF 人为因素 IGSCC 晶间应力腐蚀开裂 ISI 在役检查 LPT 液体渗透检测 MPI 磁粉检测 NDE 无损检测(也称为 NDT 或 NDI) NDI 无损检测(也称为 NDE) NDT 无损检测(也称为 NDE) NRC 核管理委员会 OE 操作经验 PANI 工业 NDE 评估计划 PDI 性能演示研究所 PISC 钢部件检查计划 POD 检测概率 RES 核管理研究办公室 ROC 相对操作特性 SATO 速度/精度权衡 SKI 瑞典语核电督察局 TOMES 任务、操作员、机器、环境和社会模型 英国 英国 美国 美国 UT 超声波检测 VT 视觉检测
已经研究了在太空环境中使用地球边界焊接技术的可行性。关于太空焊接的文献调查揭示了不同国家所做的工作的许多方面。调查表明需要更详细地关注,因为自 1984 年 7 月(Salyut-7)以来,没有在太空进行过焊接实验。解决不同焊接工艺的特殊性(例如环境限制)有助于评估和分析所选工艺。为了研究焊接工艺的使用,还应该分析测试焊接产生的方法。因此,对可能在太空环境中使用的无损检测 (NDT) 技术进行了评估。对各种 NDT 技术的比较显示了以前未考虑过的参数,例如要焊接的材料和要使用的焊接工艺类型。最有可能在太空环境中使用的候选技术是超声波、射线照相和涡流技术。尽管数学建模不是论文的主要部分,但为了研究重力对焊接池中缺陷形成(尤其是隆起)的影响,我们采用了现有模型。地球环境以及航天器内部模拟的太空环境产生了不同的结果。
摘要 线材和电弧增材制造 (WAAM) 是一种增材制造 (AM) 工艺,可以生产大型金属部件,材料浪费少,生产率高。然而,WAAM 的高沉积率需要高热量输入,这可能导致孔隙、裂纹、未熔合或变形等潜在缺陷。为了在工业环境中实际实施 WAAM 工艺,必须确保无缺陷生产。然而,使用传统 NDT 技术(例如超声波、涡流、X 射线)进行 NDT 检测是一项非常艰巨的任务,尤其是在零件生产过程中。因此,需要可靠的在线 NDT 检测和监测技术来推广 WAAM 的工业应用。这项工作的目的是使用频率带宽为 10 至 1MHz 的现场采集声学数据来检测 WAAM 生产零件上的缺陷形成。WAAM 零件经过故意引入污染物的处理,同时获取其声学信号以将不同的信号特征与缺陷关联起来。为了识别缺陷形成,使用了两种不同类型的麦克风从同一沉积过程中获取数据。信号处理包括应用时域和频域技术,即功率谱密度和短时傅立叶变换。获得的声学特征可以区分有缺陷和无缺陷的信号,并确定污染物的空间位置。获取的声学信号还表明,传统麦克风获取的数据不足以完全表征 WAAM 工艺发出的声谱。这项工作展示了声学数据和信号处理在 WAAM 生产部件的在线检查中的潜力。关键词:WAAM、声学、傅里叶变换、光学麦克风、STFT