TILs:肿瘤浸润淋巴细胞;PFS:无进展生存期;NSCLC:非小细胞肺癌;抗 CTLA-4:抗细胞毒性 T 细胞淋巴细胞-4;PD-L1:程序性死亡配体 1;RTK:Eph 受体酪氨酸激酶;NK:自然杀伤细胞;NGS:靶向下一代测序;DCB:持久临床益处;NDB:无持久益处;OS:总生存期;DFS:无病生存期;GDSC:癌症药物敏感性基因组学;KM:Kaplan-Meier;GO:基因本体论;KEGG:京都基因与基因组百科全书;TCGA:癌症基因组图谱;BER:碱基切除修复;HR:同源重组;MMR:错配修复;FA:范康尼贫血;NER:核苷酸切除修复;NHEJ:非同源末端连接; DSB:DNA 双链断裂;SSB:单链断裂;miRNA:微小RNA;
基因改造是通过各种诱变技术进行的,用于农作物改良计划。在这些诱变工具中,传统方法涉及化学和辐射诱变,导致基因组中出现脱靶和非预期突变。然而,最近的进展引入了定点核酸酶 (SDN) 用于基因编辑,与诱变和育种群体中自然发生的突变相比,显著减少了基因组中的脱靶变化。SDN 彻底改变了基因工程,使近几十年来精确的基因编辑成为可能。同源定向修复 (HDR) 是一种广泛使用的方法,它可有效实现某些植物物种的精确碱基替换和基因改变。然而,由于 HDR 在植物细胞中的效率低下以及易出错的修复途径(称为非同源末端连接 (NHEJ))的普遍性,其应用受到了限制。CRISPR-Cas 的发现改变了这一领域的格局。该系统通过在基因组中产生双链断裂 (DSB) 并通过相关修复途径(如 NHEJ)修复它们来诱导突变。因此,CRISPR-Cas 系统已广泛用于转化植物以进行基因功能分析和增强所需特性。近年来,研究人员在基因工程方面取得了重大进展,特别是在理解 CRISPR-Cas 机制方面。这导致了各种 CRISPR-Cas 变体的出现,包括 CRISPR-Cas13、CRISPR 干扰、CRISPR 激活、碱基编辑器、引物编辑器和 CRASPASE,这是一种用于切割蛋白质的新型基因工程 CRISPR-Cas 系统。此外,引物编辑器和碱基编辑器等基因编辑技术为植物基因组工程提供了绝佳的机会。这些尖端工具为快速操纵植物基因组开辟了新途径。这篇评论文章全面概述了植物基因工程的现状,重点介绍了最近开发的基因改造工具及其在植物研究中的潜在应用。
DNA修复需要对局部染色质结构进行重组,以促进并修复DNA。研究特定染色质结构域中的DNA双链断裂(DSB)修复已通过使用序列特异性核酸内切酶产生焦油的断裂来帮助。在这里,我们描述了一种结合Killerred的新方法,该方法是一种光敏剂,该光敏剂在暴露于光线时会产生活性氧(ROS),以及CRISPR/CAS9系统的基因组侵蚀性。将Killerr的融合到催化无效的CAS9(DCAS9)产生DCAS9-KR,然后可以将其靶向具有适当的指导RNA的任何所需的基因组区域。用绿光激活DCAS9-KR会产生活性氧的局部增加,从而导致“聚集”的氧化损伤,包括DNA断裂和碱基损伤。迅速(几分钟之内)激活DCAS9-KR会增加γH2AX和KU70/80复合物的募集。重要的是,这种损害在终止光线暴露后的10分钟内修复,表明DCAS9-KR产生的DNA损伤既快速又瞬时。此外,维修是专门通过NHEJ进行的,没有基于HR的机制可检测到的贡献。令人惊讶的是,修复的DNA损伤区域的测序没有发现目标区域中突变或indels的增加,这意味着NHEJ在低水平的条件下具有高忠诚度,损害有限。DCAS9-KR用于产生靶向损伤的方法与使用核酸内切酶相比具有很大的优势,因为可以通过控制光线暴露来控制DNA损伤的持续时间和强度。此外,与进行多个切割修复周期的核核酸酶不同,DCAS9-KR会产生一系列的损害,更类似于在急性暴露于活性氧或环境毒素中急性暴露时造成的损害类型。DCAS9-KR是一个有前途的系统,可在聚类的DNA病变上诱导DNA损伤并测量位点特异性修复动力学。
哺乳动物 CRISPR-Cas9 基因编辑系统利用 Cas9 使用 CRISPR 序列作为向导来识别和切割互补 DNA 链的能力。通过在哺乳动物细胞中表达 Cas9 核酸酶并引入针对目标基因的单个向导 RNA 序列 (sgRNA),可以强制 Cas9 募集到目标 DNA 序列,从而将双链断裂引入基因组 DNA。在哺乳动物细胞中,这种双链断裂最常见的修复方法是非同源末端连接 (NHEJ),这会导致切割位点删除或插入几个碱基对,通常导致移码和目标基因的功能失活。或者,同源重组 (HR) 系统可以参与修复,可以通过提供模板 DNA 来产生敲入突变或引入标签。
摘要 荧光蛋白 (FP) 标记是细胞生物学的基础方法,因为它可以观察活细胞中的蛋白质分布、动态和与其他蛋白质的相互作用。然而,使用标记蛋白过表达的典型方法可能会扰乱细胞行为并引入定位伪影。为了保持天然表达,可以将荧光蛋白直接插入内源基因中。这种方法在酵母中已经是标准做法几十年了,最近随着 CRISPR/Cas9 的出现,在无脊椎动物模型生物中也成为标准做法。然而,由于同源定向修复 (HDR) 效率低下,内源荧光蛋白标记尚未在哺乳动物细胞中广泛使用。在这里,我们描述了一种简化的方法,用于通过小鼠胚胎干细胞中的非同源末端连接 (NHEJ) 将 FP 标签高效快速地整合到天然基因座中。我们的方案最大限度地减少了使用通用供体的克隆,允许对内源蛋白进行 N 端或 C 端标记,并且从转染到成像只需不到 2 周的时间,从而提高了 FP 敲入在哺乳动物细胞中的适用性。简介荧光蛋白(FP)敲入能够实现内源性标记,从而实现蛋白质可视化,而不会产生过表达伪影1。敲入策略可以让研究人员准确观察和测量活细胞中蛋白质表达、定位和相互作用的动态。自20世纪90年代以来,FP敲入一直是酵母中的标准做法,因为这种生物可以通过同源重组有效地整合FP供体2,3。最近,由于CRISPR/Cas9技术的出现10,FP敲入已在秀丽隐杆线虫4-7和果蝇8,9中得到广泛采用。当由单向导RNA(sgRNA)编程时,Cas9会引入靶向的DNA双链断裂(DSB),细胞可以通过同源定向修复(HDR)或非同源末端连接(NHEJ)11进行修复。HDR因其高保真度而受到青睐12-15。然而,HDR 仅在某些细胞周期阶段 16 活跃,并且需要与靶标匹配的同源臂。因此,基于 HDR 的标记效率要低得多 17,18,并且需要在哺乳动物细胞中费力地克隆。为了规避这些限制,最近已引入 NHEJ 来在哺乳动物细胞中进行 FP 敲入 18–26 。一种名为 CRISPR 辅助插入标记 (CRISPaint) 22 的方法特别精简,因为它使用通用供体质粒,因此唯一需要的克隆是构建基因特异性 sgRNA。供体质粒通过转染引入细胞,与靶基因并行被 Cas9 切割,并通过 NHEJ 以非序列特异性的方式整合到靶基因中。为了允许使用任何基因特异性 sgRNA 同时保持正确的阅读框架,CRISPaint 使用通用的“框架选择器”在三种可能的阅读框架之一中切割通用供体 22 。尽管有这些优势,到目前为止,CRISPaint 仅在少数细胞系中进行了测试。此外,目前形式的 CRISPaint 系统仅可进行 C 端插入,这限制了其应用于蛋白质产物可耐受 C 端标记的基因。在这里,我们描述了一种基于 CRISPaint 的改进方法,该方法可在哺乳动物细胞中灵活、快速地在基因的任一端进行 FP 标记。我们的方法高效,需要的克隆最少,并且可以产生在天然调控元件的控制下表达的功能性内源性标记蛋白。我们在小鼠胚胎干细胞 (mESC) 中测试并优化了这种方法。我们在第一次尝试中成功标记了 5/5 个目标,从转染到成像的时间只有 2 周。此外,我们还构建了一组用于多色标记的质粒。总之,这些进展将促进 mESC 和其他哺乳动物细胞中的细胞生物学研究,并可能提供更快、更简单的快速创建敲入小鼠的途径。
基于核酸酶的基因组编辑的治疗应用将受益于通过同源定向修复 (HDR) 进行转基因整合的改进方法。为了提高 HDR 效率,我们筛选了六种 DNA 依赖性蛋白激酶催化亚基 (DNA-PKcs) 的小分子抑制剂,DNA-PKcs 是替代修复途径非同源末端连接 (NHEJ) 中的关键蛋白,可产生基因组插入/缺失 (INDEL)。从这次筛选中,我们确定 AZD7648 是最有效的化合物。使用 AZD7648 可显著增加 HDR(高达 50 倍)并同时降低各种治疗相关的原代人类细胞类型中不同基因组位点的 INDEL。在所有情况下,HDR 与 INDEL 的比率均显著增加,并且在某些情况下,实现了无 INDEL 的高频 (>50%) 靶向整合。这种方法有可能提高基于细胞的疗法的治疗效果并扩大靶向整合作为研究工具的使用范围。
CRISPR 基因组编辑是一种很有前途的转化研究工具,但可能会导致不良的编辑结果,既可能在编辑的位点上命中目标,也可能在其他基因组位点上脱靶。在这里,我们研究了通过同源定向修复 (HDR) 和使用非同源末端连接 (NHEJ) 的基因编辑插入疾病相关突变后,人类干细胞中有害的靶向效应 (OnTE) 的发生情况。我们在多达 40% 的编辑克隆中发现了逃避标准质量控制的大型单等位基因基因组缺失和杂合性缺失。为了可靠地检测此类事件,我们描述了简单、低成本且广泛适用的定量基因分型 PCR (qgPCR) 和基于单核苷酸多态性 (SNP) 基因分型的工具,并建议将它们用作编辑后的额外质量控制。这将有助于确保编辑位点的完整性并提高 CRISPR 编辑的可靠性。
针对农产品库存不足,无法满足世界人口快速增长带来的粮食需求、气候变化导致农场动物适应困难、各种广泛传播的疾病等问题,每天都有新的解决方案出现。科学家普遍认为,利用最近发展的基因组编辑技术可以解决这些问题。基因组编辑是通过核酸酶在基因组的指定位置创建位点特异性DNA双链断裂(DSB),然后通过同源重组(HDR)或非同源重组(NHEJ)方法之一修复双链断裂,从而产生基因组改变的方法。将这些方法与胚胎移植技术相结合并应用于动物养殖的主要目的是提高产量和品质,以及提高动物福利和抗病能力。本研究旨在阐明基因组编辑方法及其在畜牧业中的应用领域。
图 3. CRISPR-Cas 应用。 A)基因编辑。利用Cas9可以促进基因组中单个位点或两个位点的切割。在第一种情况(A1)中,切口的修复可以通过 NHEJ 进行,这可以通过随机插入或删除导致基因沉默,或者如果将修复模板引入细胞,则可以通过 HDR 进行修复,这将允许将新序列引入基因组以修改基因、引入点突变等。在第二种情况下(用两个 sgRNA 进行转化),可以发生两次 DNA 切割(A2),因此可以消除 DNA 序列,甚至可以进行易位。 B、C) dCas9 不具有核酸酶活性,也可以与阻遏物或激活物融合使用,以使用 CRISPRi (B) 减少或沉默基因,或使用 CRISPRa (C) 增加基因表达。 (图片由 BioRender.com 生成)
摘要 CRISPR-Cas9 系统以其高效率和特异性彻底改变了基因编辑,为靶向癌症治疗提供了新途径。本综述重点介绍了 CRISPR-Cas9 用于抑制致癌基因、恢复肿瘤抑制基因和通过编辑关键基因序列增强免疫治疗的机制。本综述还探讨了 CRISPR-Cas9 如何靶向 DNA 修复途径,例如同源定向修复 (HDR) 和非同源末端连接 (NHEJ),强调成功治疗癌症所需的精确度。尽管体外结果令人鼓舞且正在进行临床试验,但脱靶效应和免疫反应等挑战仍然存在。本综述还重点介绍了 CRISPR 技术的进展、临床前和临床研究、联合疗法以及癌症治疗的未来方向。关键词:CRISPR-Cas9、癌症治疗、基因编辑、DNA 修复途径、致癌基因、肿瘤抑制基因、免疫治疗、临床试验