深度神经网络 (DNN) 是功能强大的黑盒预测器,在各种任务上都取得了令人印象深刻的表现。然而,它们的准确性是以牺牲可理解性为代价的:通常不清楚它们如何做出决策。这阻碍了它们在医疗保健等高风险决策领域的适用性。我们提出了神经加性模型 (NAM),它将 DNN 的一些表达能力与广义加性模型固有的可理解性相结合。NAM 学习神经网络的线性组合,每个神经网络都关注一个输入特征。这些网络是联合训练的,可以学习输入特征和输出之间任意复杂的关系。我们在回归和分类数据集上的实验表明,NAM 比广泛使用的可理解模型(如逻辑回归和浅层决策树)更准确。它们在准确性方面的表现与现有的最先进的广义加性模型相似,但更灵活,因为它们基于神经网络而不是增强树。为了证明这一点,我们展示了如何利用 NAM 对合成数据和 COMPAS 累犯数据进行多任务学习(由于其可组合性),并证明了 NAM 的可微分性使它们能够为 COVID-19 训练更复杂的可解释模型。源代码可在 neuro-additive-models.github.io 上找到。
最近,利用深度神经网络的表征来预测大脑反应取得了成功,这有望增进我们对灵长类动物大脑分层信息处理的理解。这种方法的有效性表明大脑和人工神经网络在表征上已经趋同。鉴于这两个系统都学会了在现实世界的视觉任务中实现高水平的表现,我们讨论了两个问题:i)这种趋同会延伸到多远?ii)哪些因素会影响这种趋同?在这里,我们研究了不同的任务和网络选择如何影响从神经网络表征到大脑反应的映射。我们建立了堆叠的体素编码模型,并比较了预测性能和堆叠权重。我们的结果表明,这些选择可能会影响神经网络和大脑之间的对应关系,从而对神经反应产生不同的解释。重要的是,我们的结果还表明,利用我们现有的大量大脑知识,可以深入了解人工神经网络中学习到的表征。
摘要:脑电图 (EEG) 记录有助于解码张开/闭合手部的动作准备。为此,通过波束形成解决逆问题,提取运动皮层中的皮层源信号(相对于运动开始提前 1 秒)。EEG 源时期用作源时间图输入到自定义深度卷积神经网络 (CNN),该神经网络经过训练可执行双向分类任务:手闭合前 (HC) 与静息状态 (RE) 以及手张开前 (HO) 与 RE。虽然深度 CNN 效果很好(HC 与 RE 的准确率高达 89.65+-5.29%,HO 与 RE 的准确率高达 90.50+-5.35%),但在本研究中,我们探索了深度 CNN 的可解释性,以进一步了解手部亚运动准备过程中皮层源的隐藏激活机制。具体来说,进行遮挡敏感性分析以调查哪个皮质区域最好参与分类过程。实验结果显示,受试者的皮质激活具有反复出现的空间模式;特别是靠近纵向裂隙的中央区域以及运动前区和初级运动皮质的右颞区似乎参与程度很高。这些发现鼓励深入研究似乎在手的张开/闭合准备中发挥关键作用的皮质区域。
“IEEE”、IEEE 徽标和其他 IEEE 徽标和标题(IEEE 802.11TM、IEEE P1785TM、IEEE P287TM、IEEE P1770TM、IEEE P149TM、IEEE 1720TM 等)是电气和电子工程师协会的注册商标或服务标志。这些网站上出现的所有其他产品、公司名称或其他标志均为其各自所有者的商标。未经 IEEE 或其他商标所有者事先书面许可,这些网站中包含的任何内容均不得解释为以暗示、禁止反言或其他方式授予使用这些网站上显示的任何商标的任何许可或权利。DOI:10.23919/BRAIN.2020.00101 IEEE Brain 的使命是促进跨学科合作与协调,以推进神经科学技术的研究、标准化和开发,帮助改变我们对大脑的理解,以治疗疾病和改善生活。欲了解有关该计划和活动的更多信息,请访问 brain.ieee.org。本白皮书旨在促进持续讨论,以规划下一代闭环神经技术的未来发展。作为一份动态文档,这些信息将随着时间的推移随着主要利益相关者群体的投入而不断发展。我们欢迎您对本文档和主题领域的反馈。请将所有评论和信件发送至:brain-clwp@ieee.org
量子神经网络作为将经典神经计算与量子计算相结合的新领域,其早期定义在 21 世纪相当模糊和令人满意。2020 年,量子神经网络被广泛定义为将量子计算功能与人工神经网络相结合的模型或机器学习算法 [1],这剥夺了量子神经网络的根本重要性。我们认为,量子神经网络的概念应该根据其最普遍的功能来定义,即表示任意量子过程振幅的工具。我们的推理基于量子力学中费曼路径积分公式的使用。这种方法已在许多著作中用于研究量子宇宙学的主要问题,例如宇宙的起源(例如,参见 [2])。事实上,我们的宇宙是否是量子计算机的问题是由 Seth Lloyd [3] 提出的,他的答案是“是”,但我们认为宇宙可以被视为一个量子神经网络。
- 神经元的网络:神经元网络如何布置在大脑中;人造网络的常见体系结构。编码和表示:如何在神经网络中表示信息;放置编码;分布式表示。- 学习和记忆:生物神经元中的可塑性;记忆理论;在人造网络中学习。- 视图:人类视觉系统的结构;视网膜,LGN和皮质加工的功能;视觉的人工网络模型。
摘要:癫痫尖峰是脑电图中互补的信息来源,可以诊断和定位癫痫的起源。但是,不仅对脑电图劳动的视觉检查不仅是耗时,而且耗时且容易出现人为错误,而且还需要长期培训才能获得识别癫痫释放所需的技能水平。因此,采用了计算机辅助方法,目的是节省时间并提高检测和来源定位精度。由于形态相似,可能被混淆为癫痫尖峰的最重要伪影之一是眼睛眨眼。只有少数研究考虑在检测前去除此伪像,并且大多数使用视觉检查或计算机辅助方法需要专家监督。因此,在本文中,开发了一个无监督和基于脑电图的系统,具有嵌入式眼睛眨眼伪影的去除剂,以检测癫痫尖峰。所提出的系统包括三个阶段:眼睛眨眼伪影,特征提取和分类。小波变换均用于移除和特征提取步骤,以及用于分类目的的自适应神经模糊推理系统。使用公开可用的脑电图数据集对所提出的方法进行了验证。与类似的研究相比,结果显示了使用低分辨率EEG使用低分辨率EEG,计算复杂性,最高灵敏度和较小的人类相互作用的低分辨率EEG检测癫痫尖峰的效率。此外,由于癫痫尖峰检测是癫痫源定位的重要组成部分,因此该算法可用于基于脑电图的癫痫病前术前评估。