2008; Till and McCulloch,1961)。 hsc可以引起多能祖细胞(MPP),该祖细胞将逐步分为谱系的祖细胞,最终分为效应细胞(Ikuta和Weissman,1992; Okada等,1992)。 在稳态条件下,HSC是高度静止的,并且表现出低的生物合成活性(Cabezas-Wallscheid等,2017; Wilson等,2008)。 尽管目前有辩论,但HSC通常描述了依赖糖酵解ATP产生的TA,同时抑制线粒体氧化磷酸化(OXPHOS)(Chandel等,2016; Ito and Suda,2014; Liang et al。,Liang等,2020; Vannini等,2016)。 尽管如此,HSC必须能够在压力引起的激活后可逆地切换其代谢程序,以满足更高的能量需求并驱动分化(Ito和Suda,2014; Ito等,2019; Simsek et al。,2010; Takubo等,2013)。2008; Till and McCulloch,1961)。hsc可以引起多能祖细胞(MPP),该祖细胞将逐步分为谱系的祖细胞,最终分为效应细胞(Ikuta和Weissman,1992; Okada等,1992)。在稳态条件下,HSC是高度静止的,并且表现出低的生物合成活性(Cabezas-Wallscheid等,2017; Wilson等,2008)。尽管目前有辩论,但HSC通常描述了依赖糖酵解ATP产生的TA,同时抑制线粒体氧化磷酸化(OXPHOS)(Chandel等,2016; Ito and Suda,2014; Liang et al。,Liang等,2020; Vannini等,2016)。尽管如此,HSC必须能够在压力引起的激活后可逆地切换其代谢程序,以满足更高的能量需求并驱动分化(Ito和Suda,2014; Ito等,2019; Simsek et al。,2010; Takubo等,2013)。
leber遗传性视神经神经病(Lhon,Omim#535000)是记录失明案例的重要贡献者。大多数LHON病例超过90%,是由线粒体脱氧核酸(MTDNA)中三个经典致病突变之一引起的:M.3460G> a,M.11778G> a,或M.144484T> c。这些突变发生在编码亚基ND1,ND4或ND6的基因中,氧化磷酸化(OXPHOS)呼吸复合物I(CI)[1]。但是,并非所有携带其中一个突变之一的本性人都会发展出这种疾病,这是一种被称为不完全渗透率的现象。这种高光是其他因素参与疾病表现[2]。对携带这些突变的患者的研究主要定义了与该疾病相关的简化元素,包括生理,环境,
摘要:2型糖尿病(T2D)是一种多系统疾病,是许多研究的主题,但最早的疾病原因尚未阐明。线粒体损伤与几个组织中的糖尿病有关。为了扩展T2D和线粒体对血细胞的关联,我们研究了T2D与T2D相关的单核血细胞的变化”(PBMCS)线粒体功能在两组女性中的线粒体功能5),以及一系列血液生物标志物,原子测量和生理参数(VO 2max和强度测试)。双能X射线吸收率(DXA)扫描分析,心肺运动测试和血液生物标志物在T2D组中确定糖尿病的标志。Mitochondrial function assays performed with high resolution respirometry highlighted a significant reduction of mitochondrial respiration in the ADP-stimulated state (OXPHOS; − 30%, p = 0.006) and maximal non-coupled respiration (ET; − 30%, p = 0.004) in PBMCs samples from the T2D group.在T2D组的血浆样品中,总谷胱甘肽抗氧化剂池(GSHT)显着降低(-38%:p = 0.04)。糖化血红蛋白(HB1AC)的分数与炎症(C反应蛋白-CRP r = 0.618; p = 0.006)和血脂异常(甘油三酸酯-TG r = 0.815; p <0.0001)的标记呈正相关。相同的标记物(HB1AC)与线粒体活性水平负相关(Oxphos r = - 0.502; p = 0.034; et r = -0.529; p = 0.024)。通过分析PBMC线粒体呼吸及其与人体测量学和生理学参数的关联表明,PBMC可以代表一个可靠的模型来研究与T2D相关的代谢障碍有用的模型,并且可以对测试介入的有效性,从而测试了对干预剂的有效性。
引言线粒体通过氧化磷酸化(OXPHOS)产生ATP,但它们也参与了包括氧化还原信号(1),代谢物信号传导(2),钙信号传导(3)的多种生物学功能,以及从细胞中逃脱并在远处组织(4,4,5)上产生的应力信号。mito-Conchondria在合成与组蛋白和DNA表观遗传学修饰的合成生物液中也起着重要作用(6)。最后,线粒体对于产生脂质,蛋白质和核苷酸生物合成所需的底物至关重要,这对于快速增殖的细胞中生物量的生物量是必需的。在代谢活性组织(如心脏)的有丝分裂细胞中,ATP产生被认为是线粒体的主要功能。然而,线粒体的其他功能在成熟心脏中继续促进心肌细胞功能和表型的程度尚未完全理解。
近年来,线粒体因其在许多重要生物现象中的作用而获得了与疾病相关的生物医学研究的广泛认可,包括代谢、生物合成、细胞存活/死亡程序、信号通路等。1-4因此,在癌症等疾病状态下靶向和扰乱线粒体功能已成为一种新的治疗策略。5-7有趣的是,线粒体含有自己的一组 DNA、RNA 和核糖体,可通过保守的线粒体转录和翻译途径合成 OXPHOS 相关蛋白。8-10因此,破坏与小分子路线相关的线粒体“中心法则”被发现有助于改善治疗结果和克服耐药性。11,12然而,在癌细胞的细胞环境中选择性靶向线粒体仍然是一项艰巨的任务
关于癌症的起源有很多理论,即代谢理论(Seyfried & Chinopoulos,2021 年)、体细胞突变理论 (SMT)(Hanahan & Weinberg,2000 年)、癌症干细胞理论(Capp,2019 年)和组织组织理论(Soto & Sonnenschein,2011 年)。在最近发表的一项研究中,引入了一个新概念,即线粒体-干细胞连接 (MSCC)(Martinez 等人,2024 年)。这个概念结合了癌症干细胞理论和代谢理论。MSCC 理论表明,癌症源于一个或多个干细胞中氧化磷酸化 (OxPhos) 受损,可能导致癌症干细胞 (CSC) 的形成,从而导致肿瘤发生。 CSC 与线粒体之间的这种联系似乎在癌症的所有阶段都至关重要(Martinez 等人,2024 年)。MSCC 与癌症代谢理论一致,但特别关注 CSC 在疾病的每个阶段的关键作用。然而,MSCC 与 CSC 理论不同,后者通常将癌症描述为遗传性疾病。因此,许多标准癌症疗法基于 SMT,通常针对癌细胞的 DNA(van den Boogaard 等人,2022 年;Sia 等人,2020 年)。这些疗法不会恢复 OxPhos,有时甚至会改变它(Averbeck & Rodriguez-Lafrasse,2021 年;Gorini 等人,2018 年)。此外,标准疗法仅针对大量细胞,而不能针对 CSC(Lytle 等人,2018 年),而 CSC 具有最强的致瘤潜力(Adams & Strasser,2008 年)并参与转移。这些信息可以部分解释新抗癌疗法观察到的结果。事实上,Ladanie 等人表明,在过去的十五年里,新疗法使总体生存期延长了 2.4 个月(Ladanie 等人,2020 年),而 Del Paggio 等人报告称,在过去的三十年里,总体生存期延长了 3.4 个月(Del Paggio 等人,2021 年)。
引言线粒体通过氧化磷酸化(OXPHOS)产生ATP,但它们也参与了包括氧化还原信号(1),代谢物信号传导(2),钙信号传导(3)的多种生物学功能,以及从细胞中逃脱并在远处组织(4,4,5)上产生的应力信号。mito-Conchondria在合成与组蛋白和DNA表观遗传学修饰的合成生物液中也起着重要作用(6)。最后,线粒体对于产生脂质,蛋白质和核苷酸生物合成所需的底物至关重要,这对于快速增殖的细胞中生物量的生物量是必需的。在代谢活性组织(如心脏)的有丝分裂细胞中,ATP产生被认为是线粒体的主要功能。然而,线粒体的其他功能在成熟心脏中继续促进心肌细胞功能和表型的程度尚未完全理解。
摘要:大量证据表明,半自治细胞器线粒体在许多神经退行性疾病的进展中起关键作用。线粒体DNA(mtDNA)编码Oxphos复合物的成分,但突变的mtDNA用AGING积聚在细胞中,这反映了神经退行性疾病的患病率的增加。这种积累不仅源于mtDNA和高度氧化环境的修复,而且还源于裂变后的有效线粒体。In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alz- heimer's disease,帕金森氏病,肌萎缩性侧索硬化和亨廷顿氏病。我们的工作概述了针对mtDNA的新型治疗策略。
摘要:线粒体疾病 (MD) 是一组严重的遗传性疾病,由参与氧化磷酸化 (OXPHOS) 系统的蛋白质的核或线粒体基因组突变引起。MD 的症状范围广泛,从器官特异性到多系统功能障碍,临床结果也各不相同。缺乏自然史信息、目前可用的临床前模型的局限性以及 MD 患者表现出的广泛表型都阻碍了有效疗法的开发。过去十年来,越来越多的临床前和临床试验表明,基因治疗是治疗 MD 的可行精准医疗选择。然而,必须克服几个障碍,包括载体设计、靶向组织趋向性和有效递送、转基因表达和免疫毒性。本文全面概述了 MD 基因治疗的最新进展,解决了主要挑战、最可行的解决方案以及该领域的未来前景。
肿瘤微环境影响肿瘤细胞线粒体的结构和代谢功能,导致代谢活性改变,肿瘤细胞内活性氧(ROS)含量较正常细胞增加,胞内自由基产生增多,氧化途径激活。从实用角度看,开发针对线粒体的药物对治疗恶性肿瘤大有裨益,可以提高对特定细胞群的治疗选择性,减少对正常组织的毒性作用,改善联合治疗。线粒体靶向药物通常依赖小分子药物(如合成小分子药物、植物活性成分、线粒体抑制剂或自噬抑制剂等)、改良的线粒体递送系统药物(如亲脂性阳离子修饰或与其他分子结合形成靶向线粒体药物)和少量线粒体复合物抑制剂。本文将从三个主要领域回顾这些化合物:氧化磷酸化 (OXPHOS)、ROS 水平的变化以及内源性氧化和凋亡过程。