•条纹是在培养基表面上用反式针头传播微生物培养的过程。•通过火焰对接种针头/环进行灭菌,使其变热,并使其冷却30秒。•样品以这种方式提供一系列稀释的方式。•目的 - 稀释innoculum以获得单独的殖民地。•可以通过将条纹板片到新板的条纹良好的菌落条纹来完成。•将肉汤培养在左手中握住肉汤。•在燃烧器火焰上对接种针的电线环消毒。•用右手的小指卸下肉汤培养管的棉塞。•立即燃烧试管的口。•插入电线环以形成薄膜并更换棉塞。•循环中的薄膜通过牢固地向后移动并向前移动循环,以锯齿形的方式划痕。•应注意不要将循环牢固地压在琼脂表面上。•在所需温度下将培养皿中的培养皿孵育。•细菌的生长在条纹标记上可见(过夜孵化后)。
空气是人类生活的重要组成部分。但是,空气可以被微生物(例如空气寄生细菌和真菌)污染。房间中的温度和相对湿度会影响空气中的细菌和真菌的数量。这项研究旨在找出空气传播细菌的数量与真菌与温度和相对湿度之间的相关性。在15个微生物实验室的房间中,将Na和SDA Petri板放置在孵育后,计数每个板中的菌落数量。Pearson测试是使用SPSS进行的,以确定温度与空气传播细菌和真菌数量相对湿度之间的相关性。空气传播的细菌数量最多(352 CFU/m 3),而最低的数量是洗衣房(13 CFU/m 3),空气寄生的真菌数量最多,位于Mycology Room(156 CFU/M 3),而空气生气的Fungi则没有在静脉儿空间和些许房间中发现。基于皮尔逊测试的结果,发现p = 0.668(p> 0.5)的值表明温度与空气中细菌和真菌的数量之间没有相关性。根据Pearson检验的结果,p = 0.745(p> 0.5)的值表明,相对湿度与机载细菌和真菌的数量之间没有相关性。温度与空气传播细菌和真菌的数量之间没有相关性。
摘要:环境微生物学一直是环境研究的重要组成部分,因为它为大多数污染物提供了有效的解决方案。因此,有兴趣研究微生物行为,例如观察,识别,污染物降解者的分离以及微生物物种之间的相互作用。为了全面了解细胞异质性,需要在单细胞水平上采用多种方法。到目前为止,诸如培养皿等传统的散装生物工具对于单细胞在技术上具有挑战性,这可能掩盖异质性。单细胞技术可以通过检测个体细胞之间的异质性来揭示复杂且稀有的细胞种群,从而提供了更高分辨率,更高吞吐量,更准确的分析等的优势。在这里,我们从方法和应用方面概述了几种有关观察,隔离和识别的单细胞技术。显微镜观察,测序识别,流量细胞仪识别和隔离,基于拉曼光谱的识别和隔离以及其应用主要讨论。在单细胞水平上进行多技术整合的进一步发展可能会大大推动环境微生物学的研究进度,从而在环境微生物生态学中提供更多的指示。
此次活动与以下机构联合举办:罗马尼亚锡比乌工商会,罗马尼亚克卢日-纳波卡技术大学,罗马尼亚苏恰瓦“Ştefan cel Mare”大学,罗马尼亚锡比乌“Lucian Blaga”大学,罗马尼亚主办方:罗马尼亚锡比乌“MG Nicolae USCOI”学员团,罗马尼亚锡比乌“Nicolae Bălcescu”陆军学院,罗马尼亚组委会展览名誉主席:发明家 BG Prof.英语。 dhc Ghiţă BÂRSAN,博士,锡比乌“Nicolae Bălcescu”陆军学院校长,“Cadet INOVA”展览会主席:发明家协会教授英语。毕业Silviu-Mihai PETRIŞOR,博士,罗马尼亚创新大使,博洛尼亚教授副总裁:发明家 COL Assoc。教授英语。 Ioan VIRCA 博士,锡比乌“Nicolae Bălcescu”陆军学院科研副校长 接待机构成员:Prof.英语。 Paul BECHET 博士,COL 教授数学。 Vasile CĂRUŢAŞU,博士,LTC 副教授教授Gabriel POPA,博士,COL 副教授教授英语。 Marius MILANDRU,博士,COL 副教授教授英语。 Nicolae MORO 博士,COL 副教授教授Dumitru IANCU,博士,COL 副教授教授Constantin GRIGORAŞ,博士 COL Gheorghe PRUNESCU COL Marius CHELU
在培养皿中重现人体组织和器官以建立模型作为生物医学科学中的工具已获得动力。这些模型可以深入了解人类生理学,疾病发作和进展的机制,并改善药物靶标验证以及新的医学治疗剂的发展。转化材料在这种进化中起着重要作用,因为它们可以通过控制生物活性分子和材料特性的活性来对其进行编程以指导细胞行为和命运。利用自然作为灵感,科学家正在创建材料,这些材料结合了人类器官发生和组织再生期间观察到的特定生物学过程。本文向读者展示了体外组织工程领域的最新发展以及与这些变革材料的设计,生产和翻译相关的挑战。有关(STEM)细胞来源,扩展和不同的进展,以及如何介绍了需要创建功能性的人体组织模型,这些响应材料,自动化和大规模制造过程,培养条件,原位监测系统以及计算机模拟需要对药物发现相关且有效的功能性人体组织模型。本文说明了这些不同的技术如何融合以产生体外生活方式的人体组织模型,这些模型提供了一个平台来回答基于健康的科学问题。
设备制造和操作。纸基精子 DNA 分析设备在 PowerPoint 中设计,并使用固体蜡打印机(ColorQube 8570N,加拿大施乐)打印在硝化纤维素纸上(平均孔径为 0.45 μm,加拿大 Bio-Rad Laboratories Ltd.)。然后将图案化的硝化纤维素纸在 125 ºC 下加热 5 分钟,让蜡扩散穿过纸张厚度并从疏水边界扩散。为了将 ICP 功能添加到纸张中,在样品通道的开始处用移液器吸取 0.5 L 阳离子选择性纳米多孔 Nafion(20% 重量,低级脂肪醇和水,Sigma-Aldrich,美国),然后在去离子水中对膜进行水合 30 分钟。设备在室温下风干并在使用后存放在培养皿中。要使用该设备,需要将 3 μL 样品移液到样品通道中,然后用去离子水使设备饱和。通过在样品通道上施加 150 V/cm 的电压 15 分钟来诱导 ICP。在此步骤之后,使用直立荧光显微镜(Axiophot,德国卡尔蔡司公司)捕获绿色(dsDNA)和红色(ssDNA)荧光图像。捕获的图像在 ImageJ 中处理,并使用 Matlab 中的书面脚本进行数据量化。
术语“内生植物”首先是由亨利·安东·德·巴里(Henry Anton de Bary)于1866年使用的,其中内生菌被定义为生活在植物组织中的任何微生物,即真菌,细菌。在1986年,卡洛尔将内生生物描述为生活在植物组织中并引起各种感染的真菌。在1991年,培养皿将内生植物定义为可生活在植物组织中的真菌,细菌,放线菌和支原体。他将其定义为任何不损害宿主植物并显示内生菌与植物的共生关系的微生物。他提到有时内生菌可能是伤害植物的弱病原体。但是,已经证实大多数内生菌都不是致病性的。内生微生物是植物的隐藏伴侣,在植物内过着互惠互利的生活。尽管这些内生菌被认为已经发展并与土地植物相关,但内生仅在上个世纪被认可。由于有可能获得新的重要化合物及其在提高生产率中的作用,因此内生菌的有益作用变得重要,因为它们产生了各种化合物并与其他致病性和非致病性微生物相互作用。做。随着现代工具和分子生物学方法的发展,有可能确定这些微生物的正确识别,并知道它们与宿主和其他微生物的相互作用。
简介/背景:实验室的目的是向学生介绍如何通过质粒转化细菌来克隆感兴趣的基因。将要求学生设计一个实验,以通过确定存在哪些质粒中的三个基因中的哪些不同的质粒来区分三个不同的质粒。Key Concepts and Terms Covered: DNA, RNA, plasmid, vector, heritable information, genetic variation, antibiotic resistance, natural selection, gene transfer, enzyme Materials: per group: DNA Cloning video clip, DNA Cloning PowerPoint and note sheet, Online Lab Tutorials, Physical Lab activity - 2 transformation tubes, 1 packet of glass beads, 4 inoculating loops, 7 1ml-sterile transfer移液器,1条电线接种环,8种无菌培养皿,400毫升无菌LB琼脂,3毫升无菌氯化钙,3毫升无菌LB汤,4ml氨基霉素,4ml氨基霉素,4ml kanamycin,3 lb plates,3 lb plates,2 lb/kanamycin plate pg lb/ampimpim pg pg pgimm pgimm ppim plrein,质粒,200ul Pkan质粒,MM294倾斜培养(大肠杆菌),压碎冰和容器,42度厘米水浴,37度摄影孵化器,水浴,Bunsen燃烧器,废物容器,乙醇,乙醇。
蓝莓非常腐烂,真菌和细菌在所有供应链中都会影响它们的变质。目前尚无研究的姜黄素加载纳米泡(NBS)或姜黄素纳米晶体(NCS)的应用来保持其新鲜度。这项初步工作的目的是根据体外对蓝莓细菌微生物群的蛋白质效应来评估这两种纳米形象,并在培养皿中建立快速解答方案。在三种不同的光条件下(暗环境,蓝色LED和白色LED)测试了效果。的结果表明,在微生物与NBS接触和NCS接触后,照明步骤(蓝色LED或白色LED)的存在对于激活纳米结构并获得抑制halo的阳性答案至关重要。值得注意的是,与白色LED相比,蓝光显着增加了抗菌潜力。此外,突出显示了姜黄素浓度 - 依赖性效应(相对于25 µg/ml,50 µg/ml)。应用NC没有显着差异。从这项初步研究中获得的结果指出,从蓝莓微生物群对含姜黄素的NB和NC的细菌的敏感性,应进一步研究以评估纳米技术的体内适用性。
胃食管癌是癌症死亡的主要原因。尽管我们开始识别特定的可靶向基因突变和途径,但我们采用基于分子的治疗方法的尝试进展缓慢且无效。显然,我们不应再将所有胃食管癌视为同质性疾病,而这正是我们使用非特异性化疗时所做的。然而,我们目前无法监测成功的基因/途径靶向,也无法了解肿瘤如何/何时产生耐药性,也无法预测哪些患者将获得最大益处。为了改善结果,我们必须精确地详细描述这些肿瘤的异质性,然后个性化癌症治疗,并开发新途径来研究和预测个体患者的治疗效果。为此,患者衍生的类器官(其中来自个体患者的肿瘤细胞在培养皿中生长)是一种新的多功能系统,可及时扩展、详细分子表征和基因操作,并有望实现对治疗反应的预测性评估。在这篇综述中,我们将探索类器官生成的发展和基本技术,并讨论这项激动人心的技术在研究致癌基础科学和预测/指导临床癌症患者护理中的当前和未来潜在应用。
