对玛丽安的初步性能评估是针对从OpenSSL 3.3.1 [2]获得的密码原始图的C语言参考实现进行的。随后使用带有ZVK指令的代码执行等效操作。使用RISC-V Intert和循环性能CSR用于测量在执行过程中退休的指令数量和CPU周期的数量。在执行周期中观察到6倍-100倍加速度,而执行指令则介于12倍-300倍之间。
摘要。本文介绍了一种可综合的 µ 架构设计方法,通过在处理器流水线内的执行阶段利用规范有符号数字 (CSD) 表示来提高给定 RISC-V 处理器架构的性能。CSD 是一种独特的三进制数系统,无论字长 N 是多少,都可以在常数时间 O (1) 内实现无进位/无借位加法/减法。CSD 扩展以 Potato 处理器为例进行了演示,这是一种简单的 RISC-V FPGA 实现。但是,该方法原则上也可以应用于其他实现。我们通过 CSD 实现的性能提升需要二进制和 CSD 表示之间的转换开销。该开销通过扩展到七级流水线架构来补偿,该架构具有三步执行阶段,可提高吞吐量和工作频率并实现循环展开,这在具有连续计算的应用中尤其有利,例如信号处理。根据实验结果,我们将基于 CSD 的三元解决方案与原始实现进行了比较,后者使用通常的纯二进制数表示操作数。与 FPGA 上的原始 RISC-V 处理器相比,我们的方法实现了 2.41 倍的运行频率提升,其中超过 20% 的增益归功于 CSD 编码。对于计算密集型基准测试应用程序,这种增强使吞吐量提高了 2.40 倍,执行时间缩短了 2.37 倍。
RISC-V矢量加密扩展(ZVK)在2023年批准并集成到2024年的ISA主要手册中。这些表面支持在矢量寄存器文件上运行的高速对称加密(AES,SHA2,SM3,SM4),并且由于数据并行性而对标量密码扩展(ZK)提供了显着的性能改进。作为批准的扩展名,ZVK由编译器工具链提供支持,并且已经集成到流行的加密中间件(例如OpenSSL)中。我们报告了玛丽安(Marian),这是带有ZVK扩展程序的向量处理器的第一个开源硬件实现。设计基于纸浆“ ARA”矢量单元,该矢量单位本身就是流行的CVA6处理器的扩展。该实现位于SystemVerilog中,并已使用Virtex Ultrascale+ FPGA原型制作进行了测试,其计划的磁带针对22nm的过程节点。我们对矢量密码学对处理器的架构要求进行分析,以及对我们实施的绩效和面积的初步估计。
•基于定制的晶格PQC处理器,用于效率,硬件资源和灵活性•使用SIMD并行性进行效率计算•具有双标志路径的效率存储器访问•通过精细粒度重复资源的灵活性
在工作负载频谱的极端,P核为计算密集型,基于向量的工作负载(例如AI)提供了最佳解决方案。电子访问最适合于任务并行基于标量的工作负载,例如微服务。在这些极端之间,两个微体系结合结合在一起,允许高度用途和互补的解决方案。例如,具有ETEL 6处理器具有电子芯的系统可用于保护功率,以便在具有p-ocors的Intel Xeon 6处理器上运行的AI和科学工作负载可用。数据中心使用Intel Xeon 6处理器与P-cores和具有电子核的Intel Xeon 6处理器混合在一起,可以利用其平台通用性,从一个核心类型过渡到另一个核心类型,具体取决于性能和功率需求。广泛的选项组合使数据中心可以随着业务的增长而扩展。
量子信息处理为计算提供了更通用的概念,有望比传统计算机更高效。通过将信息编码在纠缠量子态中,某些算法(例如整数分解)有望实现比最知名的传统变体指数级加速。捕获离子是量子信息处理这一高度活跃领域的领先技术之一。它们允许原理验证演示,但仍然仅限于对数十个量子比特的操作。将这些系统扩展到其计算能力超过传统计算机能力的规模仍然是一项非常具有挑战性的任务。在本论文的范围内,对低温离子捕获装置进行了修改和表征,目的是展示可扩展量子计算的构建模块。本论文介绍了三个相互关联的项目。第一个项目涉及实验装置本身,该装置内有一个分段表面陷阱,能够捕获 40 Ca + 和 88 Sr + 离子。我们描述了该装置和实施的修改以及为评估其性能而执行的特性测量。然后使用该装置开发和评估一种用于纠缠门的新型校准算法。量子门操作的性能由实验决定,取决于操作参数的确定和设置的准确性,以及这些参数的稳定性。开发的校准协议可以自动估计和调整被广泛用于离子阱量子信息处理器的两量子比特 Mølmer-Sørensen 纠缠门操作的实验参数。使用贝叶斯参数估计的协议在不到一分钟的时间内完成,由于校准错误导致的剩余中位门不保真度小于退相干源给出的不保真度。最后,使用了一种新颖的门方案来演示混合物种纠缠,它可以实现按顺序读出而不会扰乱整个寄存器,这是纠错的关键因素。相同的门方案也可用于在量子比特之间产生纠缠,这是量子位的概括。通过使用每个离子的更多级别,可以在相同数量的粒子中编码更多信息,从而增加量子计算希尔伯特空间的大小。
使用像Technexion Rovy-4VM这样的SOM,设计人员可以在简化设计过程的模块周围开发其AMR产品。ROVY-4VM在单个PCB上集成了处理器,电源管理IC(PMICS)和内存(DDR,UFS,SPI和Flash),该PCB已对其进行了充分测试和生产准备,并且处理器的其余剩余外围设备可方便地路由到板上到板到板到板上的高密度高密度互连(HDI)。虽然设计师可以自由从头开始设计带有其选定功能的载体板,但TechNexion创建了Rovy-4VM-EVK,这是ROVY-4VM的完整以AMR为中心的套件(如图2中的AMR演示所示)。该套件可用作参考设计,以快速启用使用FPD-Link™III技术(Techn-3P-VLS3-X-SL)等功能,添加多达8倍的插件相机(Techn-3p-vls3-X-SL),并添加显示器(还具有FPDLink III),并通过标准或单一的端口端口来扩展Ethernet端口,并使用标准或易于的Ethernet Ethernet和Sissicle Ethernet和Singles gb。和发展。
1 ABES工程学院,印度加兹阿巴德,摘要:智能卡和便携式电子设备中的加密电路对于用户身份验证和安全数据通信至关重要。这些电路需要紧凑,节能,能够处理多个加密算法并提供良好的性能。本文首次介绍了通用体系结构上三种标准加密算法的硬件实现。微型编码密码处理器是为智能卡应用程序设计的,在满足所需的功能和性能标准的同时,支持私钥和公共密钥算法。令人印象深刻的是,使用0.18 µm 6毫米CMOS技术,它小至2.25mm²。可以简单地通过更新用铁电RAM(FERAM)制成的内存块的内容来实现一种新算法。feram允许非易失地存储配置位,只有在引入新算法时才需要更改。索引术语 - 密码学,计算机安全,微处理器,智能卡。
摘要:本论文介绍了具有RISC-V处理器核心系统的I3C控制器外围设备的RTL设计和实现。论文描述了具有其主要功能的I3C协议,包括从免费提供的规范中与其前身I2C的向后兼容。从特定方面,已经选择了协议的支持特征,并编写了系统外围设计。在VHDL中实施了外围的单个块,并使用RISC-V系统进行了测试。为了验证通信,创建了I3C目标代理,充当连接到I3C总线的目标设备。为了进行定时验证,控制器是为FPGA进行了合成并实现的。生成的网表用于外围的门水平模拟。关键字:VHDL,I3C,控制器,仅SDR,RISC-V,AHB,FPGA
中断控制器外部GICV3外部GICV3外部GICV3外部GICV3外部GICV4外部GICV3外部GICV3外部GICV4外部GICV4外部GICV4外部GICV3外部GICV3外部GICV3外部GICV3外部GICV4外部GICV4外部GICV4外部GICV4外部GICV4外部GICV4外部GICV4外部GICV4