Edity®Therapeutics已开发了一个专有的平台,用于选择性地递送细胞内蛋白来患病组织,并正在创建具有治疗潜力的新细胞药物。Edity正在追求多个治疗领域,并且是唯一具有具有受体水平特异性的患病细胞并在大规模上解锁细胞内蛋白质组的公司。该公司正在开发肿瘤学,基因疗法,自身免疫性和再生医学领域的多种产品候选者。在https://edity-tx.com/
CONSPECTUS:现代药物发现工作中最大的瓶颈之一是解决不可用药的蛋白质组。目前,超过 85% 的蛋白质组仍然被认为是不可用药的,因为大多数蛋白质缺乏明确的结合位点,而这些位点无法用小分子进行功能性靶向。解决不可用药的蛋白质组需要创新方法来发现针对不可用药蛋白质的配体,以及开发新的治疗方法来功能性地操纵感兴趣的蛋白质。化学蛋白质组学平台,特别是基于活性的蛋白质分析 (ABPP),已经出现,通过使用基于反应性的化学探针和先进的基于定量质谱的蛋白质组学方法来发现“可配体热点”或可以用小分子配体靶向的蛋白质组范围的位点,以解决不可用药的蛋白质组问题。随后,这些位点可通过共价配体进行药理靶向,以快速发现针对目标治疗性蛋白质的功能性或非功能性结合剂。化学蛋白质组学方法还揭示了对配体能力的独特见解,例如发现独特的变构位点或蛋白质的内在无序区域,这些区域可通过药理学和选择性靶向,以实现生物调节和治疗益处。化学蛋白质组学平台还通过发现几种新的共价 E3 连接酶募集剂,扩大了针对靶向蛋白质降解和蛋白水解靶向嵌合体 (PROTAC) 的新兴治疗模式的范围。展望未来,化学蛋白质组学方法无疑将对进一步扩展现有研究产生重大影响,包括蛋白质组范围的配体可定位性、针对高价值非药物治疗靶点的靶向配体发现、进一步扩大靶向蛋白质降解平台的范围、发现能够独特调节蛋白质功能的新分子胶支架,以及最令人兴奋的是开发下一代小分子诱导邻近治疗模式,这些模式超越了降解。随着化学生物学成为药物发现越来越重要的驱动力,该领域将迎来激动人心的一天,化学蛋白质组学方法必将成为开发下一代疗法的支柱。■ 主要参考文献
美国药房学院协会美国生理学杂志肺细胞和分子生理学分析化学化学生物化学和生物学ACTA ACTA BMC医学基因组学化学研究药学教学和学习专家蛋白质组学专家蛋白质组学专家蛋白质组蛋白质组学研究杂志美国蛋白质学研究杂志的其他细胞素质性蛋白质蛋白质学和构成型蛋白质学的植物学方法,专业活动
摘要:机器学习 (ML) 识别共价配位位点可能会加速靶向共价抑制剂的设计,并有助于扩大可用药的蛋白质组空间。本文我们报告了基于树的模型和卷积神经网络 (CNN) 的严格开发和验证,这些模型和神经网络是在新近整理的数据库 (LigCys3D) 上训练的,该数据库包含近 800 种蛋白质中的 1,000 多个配位半胱氨酸,由蛋白质数据库中的 10,000 多个三维结构代表。树模型和 CNN 的未见测试分别产生了 94% 和 93% 的 AUC(受试者工作特征曲线下面积)。基于 AlphaFold2 预测的结构,ML 模型以超过 90% 的召回率重现了 PDB 中新配位的半胱氨酸。为了协助共价药物发现社区,我们报告了 392 种人类激酶中预测的可配体半胱氨酸及其在序列比对激酶结构(包括 PH 和 SH2 结构域)中的位置。此外,我们还发布了可搜索的在线数据库 LigCys3D(https://ligcys.computchem.org/)和网络预测服务器 DeepCys(https://deepcys.computchem.org/),这两个数据库都将通过包含新发布的实验数据不断更新和改进。本研究代表了迈向由机器学习主导的大型基因组数据和结构模型集成的第一步,旨在为下一代共价药物发现注释人类蛋白质组空间。
乳腺癌耐药蛋白 (BCRP) 是药物效应和药物相互作用中的关键转运蛋白。然而,多药耐药蛋白 1 (MDR1) 的内源性表达混淆了体外模型中 BCRP 介导转运的解释。在这里,我们使用 CRISPR-Cas9 编辑的 Madin-Darby 犬肾 (MDCK) II 细胞系 (MDCK cMDR1-KO ) 来稳定表达人类 BCRP (hBCRP),而没有内源性犬 MDR1 (cMDR1) 表达 (MDCK-hBCRP cMDR1-KO )。靶向定量蛋白质组学验证了 hBCRP 的表达,整个蛋白质组的整体分析证实了其他药物转运蛋白或代谢酶的背景表达为零或非常低。这种新的细胞系具有与 MDCK cMDR1-KO 和之前建立的过表达人类 MDR1 (hMDR1) 的相应细胞系 MDCK-hMDR1 cMDR1-KO 相似的蛋白质组。对 MDCK- hBCRP cMDR1-KO 的功能研究证实了高 hBCRP 活性。MDCK-hBCRP cMDR1-KO 细胞系与 MDCK-hMDR1 cMDR1-KO 一起轻松准确地识别了 hBCRP 和 hMDR1 转运蛋白的共享或特定底物。这些细胞系为药物开发中评估药物效应和药物间相互作用提供了新的、改进的体外工具。© 2020 美国药剂师协会®。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可 (http://creativecommons.org/licenses/by/4.0/) 开放获取的文章。
摘要:神经疾病是全球残疾和死亡的主要原因之一,并且仍然很难治疗。组织工程提供了测试潜在治疗方法的途径;但是,生物学上精确的脑组织模型的发展仍然具有挑战性。鉴于其神经源性潜力和可用性,脂肪衍生的干细胞(ADSC)是创建神经模型的感兴趣。尽管在将ADSC分化为神经细胞的过程中取得了进展,但它们在3D环境中的分化,这些环境更代表神经系统的体内生理状况,至关重要。这可以通过调节3D矩阵组成和刚度来实现。在基于1.1 KPa聚乙烯基于3D水凝胶基质的1.1 kPa聚乙烯基质中培养人ADSC,以评估对细胞形态,细胞生存力,蛋白质组变化和自发神经分化的影响。结果表明,细胞在14天的时间内继续增殖,并与2D培养物呈现了不同的形态,并且细胞相互伸长和对齐。蛋白质组分析揭示了439种蛋白质的丰富性变化> 1.5倍。循环核苷酸3' - 磷酸二酯酶(CNPase)标记物,并与蛋白质组学确认。的发现表明,当在具有与中枢神经系统相似的机械性能的环境中生长时,ADSC会自发增加神经标记的表达。
由SARS-COV-2和多个变体或子变量引起的毁灭性的共同19岁大流行仍然是一个持续的全球挑战。SARS-COV-2-特异性T细胞反应在早期病毒清除,疾病严重程度控制,限制病毒传播和支持COVID-19 COVID-19疫苗效能中起关键作用。研究估计了每个个体中宽阔和稳健的T细胞反应,至少识别30至40个SARS-COV-2抗原表位,并与COVID-19的临床结果相关。几种关键的免疫主导病毒蛋白蛋白质组表位,包括S蛋白质和非S蛋白质衍生的表位,可能主要引起有效和持久的抗病毒保护作用。在这篇综述中,我们总结了靶向不同SRAS-COV-2蛋白质组结构后的免疫主流表位特异性T细胞的免疫反应特征,包括丰度,大小,频率,表型特征和反应动力学。此外,我们分析了表位免疫层次结构,结合了多个表位特异性T细胞属性和TCR曲目特征,并讨论了交叉反应T细胞对HCOV,SRAS-COV-2和SRAS-COV-2和SRAS-COV-2和CARESSS的变种的显着含义。本综述对于映射T细胞反应对SARS-COV-2的景观至关重要,并优化了当前的疫苗策略。
抽象的目的是破译主要的人乳寡糖(HMO),2'-五甲基乳酸(2'FL)的机制,可以影响小鼠喂养高脂饮食(HFD)喂养的体重和脂肪质量增加。我们想阐明2'FL代谢作用是否与肠粘膜产生和分泌,粘蛋白糖基化和降解以及肠道微生物群,粪蛋白蛋白质组和内源于内源于内球蛋白(ECB)系统的调节有关。结果2'fl补充可降低HFD诱导的肥胖症和葡萄糖不耐症。这些作用伴随着肠道粘液层的几种变化,包括粘液产生和成分,以及分泌和跨膜粘蛋白,糖基转移酶以及涉及粘液分泌的基因的基因表达。此外,2'fl增加了参与粘蛋白糖降解的细菌糖基水解酶。These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides , different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system.我们还研究了瘦和肥胖人类的粪便蛋白质组织,发现比较瘦小小鼠的类似变化。结论我们的结果表明,HMO 2'FL通过调节粘液层,肠道微生物群和欧洲央行系统来影响宿主代谢,并提出粘液层作为预防肥胖和相关疾病的新潜在靶标。
使用小分子抑制剂针对蛋白质的酶功能以及使用小分子激动剂和拮抗剂针对受体蛋白的功能是小分子药物开发的主要形式。这些小分子调节剂基于传统的占用驱动药理学方法。对于传统上被认为无法被小分子调节剂用药的蛋白质组空间,例如具有支架功能的酶、转录因子和缺乏明确的小分子结合位点的蛋白质,靶向蛋白质降解剂提供了使用事件驱动药理学方法对蛋白质组进行用药的机会。降解分子(PROTAC 或分子胶)将目标蛋白质 (POI) 和 E3 泛素连接酶拉近并与泛素-蛋白酶体系统 (UPS)(用于降解 POI 的细胞废物处理系统)结合。为了开发靶向蛋白质降解剂来满足治疗需求,将从几个方面考虑,即致病蛋白质的选择性降解、超出 Lipinski 五规则 (bRo5) 范围的降解剂的口服生物利用度、新的 E3 泛素连接酶和分子胶降解剂的需求以及新药物模式的耐药性。本综述将说明靶向蛋白质降解药物发现和开发中几个未被充分讨论的关键考虑因素:1)影响 PROTAC 分子选择性的因素以及 PROTAC 的设计以选择性降解协同病理蛋白质;2)结合多组学方法开发检测方法,以鉴定新的 E3 连接酶及其相应的配体以及分子胶降解剂;3)分子设计以提高 bRo5 PROTAC 的口服生物利用度;4)降解剂的耐药性。