P-糖蛋白抑制剂等药用辅料还可以增加药物对肠膜的溶解度和亲和力,增强旁细胞途径和内细胞摄取,激活淋巴转运途径,从而提高口服药物的生物利用度。本综述旨在通过评估渗透性和药代动力学研究中 P-糖蛋白外排的元数据,综述和评估药用辅料作为 P-糖蛋白渗透性抑制剂在改善药物制剂中口服药物生物利用度方面的表现。综述结果是已被证明可有效作为 P-糖蛋白抑制剂的药用辅料,分别来自表面活性剂和聚合物组,即 TPGS 和泊洛沙姆 188。与传统制剂相比,所有包含药用辅料作为 P-gp 抑制剂的纳米系统都显示出提高口服药物渗透性和生物利用度的潜力。这些系统的有效性已通过体外(Caco-2 细胞)、离体(外翻肠囊)、原位(SPIP)和体内(AUC)方法进行了评估。
PCM 在潜热存储应用中的主要问题之一是提高热导率。已经进行了一些理论和实践研究来检查各种潜热存储系统的传热过程 [30]。目前,提高 PCM 热导率的主要方法是添加高热导率基质和化学改性添加剂的表面。这些包括表面和接枝功能团改性,以及添加多孔三维 (3D)、二维 (2D)、一维 (1D) 和零维 (0D) 结构添加剂。虽然改性和接枝功能团可以增加材料相容性并降低界面热阻,但改性的成功率较低且操作更复杂。加入导热基质可以形成导热链,从而减少声子散射并加快热量传输。另一方面,较高的添加剂质量含量将大大限制 PCM 的储热能力。因此,在选择提高 PCM 热导率的技术时,应考虑适当的添加量和实验条件。
1。肾脏科学与泌尿外科研究中心,伊朗德黑兰Baqiyatallah医学科学大学临床科学研究所。2。新加坡新加坡国立大学Yong Loo Lin医学院药理学系。 3。 NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。 4。 意大利巴勒莫大学90123生物学,化学和药物科学与技术系。 5。 细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。 6。 纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。 7。 美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。 8。 伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。新加坡新加坡国立大学Yong Loo Lin医学院药理学系。3。NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。 4。 意大利巴勒莫大学90123生物学,化学和药物科学与技术系。 5。 细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。 6。 纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。 7。 美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。 8。 伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。4。意大利巴勒莫大学90123生物学,化学和药物科学与技术系。5。细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。6。纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。7。美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。8。伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。
摘要:在石墨烯兴起后2D材料的最新成功的激增中,由于其独特的纳米级特性的结合,钼(2D-MOS 2)(2D-MOS 2)一直在基本和应用的视点中引起人们的注意。例如,2D-MOS 2的带隙从直接(以批量形式)变为超薄纤维(几层)的间接(几层),为光电子学中的各种应用提供了新的前景。在这篇综述中,我们介绍了2D-MOS 2薄膜的合成和表征范围的最新科学进步,同时着重强调了它们在能量收集,气体传感和等离子设备中的某些应用。对2D-MOS 2的物理和化学处理途径的调查首先提出,然后详细描述并列出了用于研究其有趣的光学特性的MOS 2纳米材料以及理论模拟的最相关特征技术。最后,讨论了与高质量合成和相当可控制的MOS 2薄膜有关的挑战,并将其整合到新型功能设备中。
结果试验(Colcot)洛佩兹·桑登(Wolfgang Koenig)。心脏病学,蒙彼利埃大学,蒙彼利埃大学,魁北克,加拿大4圣弗朗西斯。德里斯本,里斯本,里斯本,克莱德,格拉斯哥,英国格拉斯哥11号网络生物医学研究中心 - 北力疾病,马德里,西班牙马德里12债。生物特征,蒙托比恩,蒙托邦,
肿瘤是一种严重威胁人类健康的疾病,一直是医学领域的主要挑战。目前,肿瘤治疗的主要方法包括手术,放疗,化学疗法等,但是这些传统的治疗方法通常有一定的局限性。此外,肿瘤复发和转移也是临床治疗中面临的困难问题。在这种情况下,越来越强调了金属纳米材料在肿瘤疗法中的重要性。金属纳米材料具有独特的物理,化学和生物学特性,为肿瘤治疗提供了新的思想和方法。金属纳米材料可以通过各种机制来实现针对肿瘤的靶向治疗,从而减少对正常组织的损害。它们还可以用作药物携带者,改善药物的稳定性和生物利用度;同时,一些基于金属的纳米材料也具有光热,光动力和其他特征,可用于肿瘤的光疗。本综述研究了过去5年内在肿瘤疗法中应用金属纳米材料的最新进展,并提供了对未来应用的潜在见解。
1. 引言 癌症是一种非传染性疾病,是 21 世纪人类死亡的重要因素。根据世界卫生组织 (WHO) 的调查结果,在所调查的 172 个国家中,癌症是 91 个国家中 70 岁以下人群过早死亡的主要原因 [1]。在大多数情况下,身体不同器官内细胞的异常增殖会导致癌症的发展。因此,癌症的分类取决于特定器官系统中发生的异常细胞生长 [2]。癌症有 100 多种不同的类型,某些器官(例如乳腺癌、皮肤癌、结肠癌和肺癌)特别容易患上癌症 [3-6],并常常导致致命的后果。治疗癌症的主要方式通常包括化疗、放疗和手术干预 [7]。
可驳斥的推定 - 立法机关决定不提供有关NYSDEC湿地边界的高级监管通知,即在创建或修改地图时,带有通知邮寄给土地所有者的监管地图。相反,该计划将与联邦湿地计划更相似。如果您的财产上有“湿地”,则可以拒绝推定。未来未来的监管制图湿地不对土地所有者提前通知。土地所有者必须向NYSDEC证明其财产或附近的湿地不受NYSDEC的管制。
PL21-0091重大修改09/24/2024 THOMAS CHAFFEE:(805)654-2406 5000090235重大修改以有条件使用许可证允许LU11-0030修改以下内容:1)时间扩展时间额外10年; 2)在周末彩弹/气枪活动中允许的当前占用率从每天的250到450,而每年的活动数量没有增加(目前允许110天); 3)在目前的比赛场的东,北部和东北添加3个新的彩弹/气枪赛场; 4)添加3个新的停车场,用于675个额外的停车位; 5)添加6个周末的“泥泞跑步”活动,其中1,000名参与者最多的与会者人数; 6)在当前彩弹射击/气枪田的西北部附近的农业区域中添加一个新的泥浆跑道。在Accela文档选项卡中下载了交通研究和计划。