•熔化温度(TM):DNA的熔化温度是指样品中50%DNA的温度已从双链DNA(DSDNA)变性为单链DNA(SSDNA)。对DNA样品熔融曲线的敏感测量可用于检测两个DNA样品之间的单核苷酸差异。
大多数 CRISPR 型 V 核酸酶在富含 T 的 PAM 刺激下切割双链 (ds) DNA 靶标,这限制了它们的靶向范围。在这里,我们鉴定并表征了一个新的型 V RNA 引导核酸酶家族 Cas 12l,它专门识别富含 C 的 (5'-CCY-30) PAM。其 CRISPR 基因座内的基因组织类似于 II-B 型 CRISPR-Cas 9 系统,但序列分析和功能研究均将其确立为一个新的型 V 效应物家族。生化实验表明,Cas 12l 核酸酶在 37 至 52°C 之间发挥最佳功能,具体取决于直系同源物,并优先切割超螺旋 DNA。与其他型 V 核酸酶一样,它表现出由 ssDNA 或 dsDNA 靶标识别触发的附带非特异性 ssDNA 和 ssRNA 切割活性。最后,我们表明,一个家族成员 Asp 2 Cas 12 l 可以在异源细胞环境中发挥作用,这表明这一组新的 CRISPR 相关核酸酶可以被用作基因组编辑试剂。
与自然界中存在的巨大变异和基因组工程师设想的巨大变异相比,创建和表征单个遗传变异的规模仍然有限。在这里,我们介绍了逆转录子文库重组 (RLR),这是一种高通量功能筛选方法,其规模和特异性超过了 CRISPR-Cas 方法。我们利用逆转录子的靶向逆转录活性在体内产生单链 DNA (ssDNA),以 > 90% 的效率整合编辑并实现多路复用应用。RLR 同时引入了许多基因组变异,产生了可通过靶向深度测序寻址的汇集和条形码变异库。我们使用 RLR 对合成的抗生素抗性等位基因进行汇集表型分析,展示了相对增长率的定量测量。我们还使用进化细菌的剪切基因组 DNA 进行 RLR,通过实验查询数百万个序列以寻找因果变异,证明 RLR 特别适合利用大量的自然变异库。使用体内产生的 ssDNA 进行汇集实验为探索整个基因组的变异提供了途径。
DNA信息存储为元数据存储提供了极好的解决方案,这是由于其高密度,可编程性和长期稳定性。但是,目前在DNA存储中的研究主要集中在存储和阅读数据的过程上,缺乏针对安全元数据擦拭的全面解决方案。在本文中,我们基于对引物板杂交的热力学能量的精确控制,使用CRISPR-CAS12A(RSDISC)在DNA信息存储中进行随机消毒方法。我们利用CRISPR-CAS12A对单链DNA(SSDNA)的侧支裂解(反式)来实现元数据中文件的选择性消毒。此方法可以使SSDNA降解具有不同的GC含量,长度和辅助结构,以在一轮中在DNA存储中获得28,258个寡核苷酸的消毒效率,最高99.9%。我们证明,基于引物 - 板块杂交效率的模型,可擦除文件的数量可以达到10 11.7。总体而言,RSDISC提供了一种随机的消毒方法,以设置DNA数据存储中信息加密,文件分类,内存汇编和准确读取的基础。简介
图 2:使用核转染提供的 Cas9-mRNA 核酸酶、合成 sgRNA 和 ssDNA 寡核苷酸修复模板对 iPSC 进行基因编辑不会对 iPSC 形态造成干扰,可用于对基因组进行微小改变。A) 核转染后 48 小时拍摄的相位图像。比例尺为 100 μm。BC) 分析 LMNA 基因座 (B) 和 MYH7 基因座 (C) 中具有指定所需编辑 (蓝色) 或不需要的 INDEL (灰色) 的总 NGS 测序读数百分比。
DNA 水凝胶最近引起了人们的极大兴趣,因为它们具有高含水量的多孔 3D 结构、类似组织的弹性,并且能够通过其核酸序列进行非常有效的编程,例如,实现形状记忆持久性、分子识别能力和刺激敏感性,使其成为生物医学、传感、催化和材料科学应用的有吸引力的材料。1 在用于制备 DNA 水凝胶的众多方法中,通常基于合成的线性或分支 DNA 基序的自组装,通常借助于酶连接或杂交链式反应,滚环扩增 (RCA) 起着特殊的作用,因为所需的合成寡核苷酸成本相对较低。 2 RCA 使用 phi29 DNA 聚合酶从短的环状 ssDNA 模板开始生成长的串联单链 DNA (ssDNA) 链 (4 20 000 nt),由于其具有极高的合成能力,因此可以在等温条件下廉价地生产大量 DNA。3 与基于杂交的 DNA 水凝胶不同,在杂交效率完全的前提下,DNA 含量可以根据初始 DNA 单体浓度估算出来,4 RCA 产生的 DNA 则不易测量。值得注意的是,到目前为止,还没有通用的方法来准确量化 RCA 水凝胶的 DNA 含量,但这些材料
校验和可用于验证和快速查找关联的符号。例如,seguid校验和用27个字符的字符串独特地识别蛋白质序列。目标:原始SEGUID虽然对蛋白质序列和单链DNA(ssDNA)有效,但由于拓扑差异而不适用于cir和双链DNA(DSDNA)。挑战包括如何唯一代表线性dsDNA,圆形ssDNA和圆形dsDNA。为了满足这些需求,我们提出了SEGUID V2,它扩展了原始SEGUID以处理其他类型的序列。结论:SEGUID V2产生链和旋转不变校验和单链,双链,可能交错,线性和圆形DNA和RNA序列的校验。可自定义的字母键允许其他类型的序列。与使用base64的原始SEGUID相反,Seguid V2使用base64url编码SHA-1哈希。这可以确保可以在文件名中使用SEGUID V2校验和,无论平台和URL中,都可以使用最小的摩擦。可用性:SEGUID V2很容易适用于MIT许可下的主要程序和语言。JavaScript包装seguid可在NPM上找到,Python包装pyguid和cran上的r seguid。关键字:校验和hash,dna,rNA,蛋白质,sha-1,base64url,seguid
A3A 靶向转移治疗 A POBEC 3A (A3A) 是人类最重要的脱氨酶之一,可使单链 DNA (ssDNA) 发生超突变。超突变与多种肿瘤-癌症转移进展有关 1-4 5-7 。已报道 APOBEC 依赖性癌症类型,如肺癌 8、9-11 、前列腺癌 12 、尿路上皮癌 13 、膀胱肿瘤 14 、卵巢鳞状癌 15、16 、乳腺癌 17 、子宫内膜异位症/宫颈癌 18、19 和头部 20 ,超突变酶也与某些自身免疫有关 21 。为了使 ssDNA 超突变,A3 酶诱导脱氧胞嘧啶随机脱氨为脱氧尿嘧啶 (dC-to-dU),这已通过人工模拟得到证实 22 。人类 A3A 抑制已被提议作为一种干扰转移产生的可能治疗方法 23 。然而,A3A 抑制受到其他七种结构相关的人类 A3 酶 (A、B、C 24 、D、F、G 25 、H 和 AID 26 ) 存在的限制,这些酶具有生理/防御功能和可控诱变,例如抗体多样化 27 28 、肠细胞更新 29 30 、衰老 31 或抗病毒活性 32、33 34 。经晶体学和低温电子显微镜测定,大多数人类 A3 酶表现出具有相似 3D 结构的不对称同型二聚体(异型二聚体)结构(A 35 、B 36 、C 24 、F 37 、G 25 、H 38 、AID 26 ,表 S2 和图形摘要)。每个 A3 单体包含 ssDNA 结合所需的结构域和锌依赖性 dC 到 dU 脱氨的独立结构域。由于 A3A ssDNA 结合和二聚体界面的可能抑制剂探索很少 25 ,因此本文使用共同进化对接通过计算探索了这些可能的靶点。最终目标是探索任何与肿瘤转移有关的超突变的计算机干扰。这里采用了基于 Java 的 Data Warrior B uild E volutionary Library (DWBEL) 2-5 协同进化算法,作为筛选超大型类药库 39, 40 或从蛋白质序列 41-43 中预测机器学习对接模型的一种替代方法。具体而言,DWBEL 协同进化标准经过调整,可随机生成数万个原始子代,以选择数百个具有低纳摩尔亲和力的最佳无毒适配子代。类似的协同进化对接预测,当靶向其他蛋白质-配体对时,亲和力会更高。例如,针对耐药葡萄球菌的新型抗生素 44 、针对不动杆菌的 Abaucin 衍生物 45 、非人类抗凝血灭鼠剂 46 、猴痘 Tecovirimat 抗性突变体 47 、内腔 SARS omicron 48 、炎性冠状病毒 ORF8 蛋白 49 、人类 K + 通道的原核模型 50 、VHSV 弹状病毒的内腔 51 、疟疾环子孢子蛋白 47 、RSV 抗性突变体 52 和抗 HIV-Vif A3G 53 。
适体是单链寡核苷酸,它们结合具有高亲和力和特异性的分子靶标。但是,他们的发现和进化仍被限制在常规的SELEX方法上。在这里,我们提出了一种适体结合语言(可易于使用的)模型,该模型通过将预处理的蛋白质和核酸序列编码与跨注意结构相结合,以捕获适体 - 蛋白结合的决定因素,从而实现跨不同蛋白质靶标的结合相互作用的可靠预测。该模型采用具有多头跨意义机制的基于变压器的结构,优化了序列特定特征和位置嵌入,以学习适体及其蛋白质靶标之间的复杂结合模式,同时维持跨不同适应性库的序列长度多样性。我们跨不同基准测试的广泛评估表明,在概括实验结合曲线方面的现有方法相对于现有方法的优势。可易于观察的蛋白质和产生的适体表现出强烈/有利的概括性。在现实世界中,可易于识别的是几种经过实验验证的CD117 ssDNA Apatamers先前被传统SELEX遗漏的,并产生了一种新型的SSDNA Apatamer,该Aptna Aptamer与APP62与人类CD4共享具有可比的结合曲线。这些结果展示了可捕获捕获适体蛋白结合的分子相互作用的能力。