QAS:现在可以绕过串扰抑制矩阵来减少延迟 QAS:现在可以使用“信号输出”选项卡中的控件将振荡器直接输出到信号输出 1(正弦)和 2(余弦)上的信号输出上。相对节点已更改 QAS:现在可以在仪器的 Trigger Out 连接器上输出已辨别的量子位状态 QAS:可以在 LabOne UI 中编辑串扰抑制矩阵 QAS:现在可以通过 LabOne UI 中混频器的增益和相位不平衡指定去偏移参数 AWG:添加了 getQAResult 和 waitQAResultTrigger 指令以读取最后一个量子位状态辨别的结果 AWG:提高了编译速度和稳定性 AWG:波形查看器现在支持长达 10 MSa 的波形 AWG:序列器程序内存已限制为缓存内存 LabOne:macOS 支持 LabOne:图可以保存为 PNG 或 JPEG 格式 LabOne:为图、输入字段和设备连接对话框添加上下文菜单 LabOne API:使用 vectorWrite 进行波形更新,被更快、更强大的 setVector 方法取代。波形现在按照序列程序中定义的顺序排序,而不是按字母顺序排序。 LabOne API:波形更新现在使用整数格式。建议使用辅助函数 convert_awg_waveform 和 parse_awg_waveform 转换为新格式。 规格:添加了信号输出相位噪声的性能图
手术获得的原发性肿瘤组织样品和相应的连续血样品,分别获得了体细胞突变筛查和ctDNA监测。使用三组结直肠癌患者(CRC)的三个不同平台对原发性肿瘤进行了测序分析。分别分析了11、27和14例患者的肿瘤样本,分别为1、2和3组。使用Clearseq综合癌症小组(Agilent Technologies,Inc.,Santa Clara,CA)使用Illumina HISEQ 2000 Sequencer(Illumina,Inc。,San Diego,CA)分析集1,该基因针对151个疾病相关的基因(Maintext的参考文献34)。 分别使用ION Proton™和ION S5™系统(Thermo Fisher Scientific,Waltham,MA)分析了集2和3,其定制面板的靶向39个基因,这些基因经常在CRC中改变。 1集1样品在我们的先前研究中进行了分析,该研究考虑了原发性肿瘤的三个区域以及外周血单核细胞(PBMCS)(总共四个样品)的相应DNA,以评估肿瘤内遗传异质性对循环肿瘤DNA DNA(CTDNA)(CTDNA)(参考文本34)的影响。 在该研究中,结果表明,肿瘤遗传异质性并不是CTDNA分析的主要障碍,前提是从肿瘤的单个区域中选择具有足够变异等位基因频率(VAF)的体突变。 本研究中原发性肿瘤测序的最高优先级是检测一些具有高VAF的体细胞突变。集1,该基因针对151个疾病相关的基因(Maintext的参考文献34)。集2和3,其定制面板的靶向39个基因,这些基因经常在CRC中改变。1集1样品在我们的先前研究中进行了分析,该研究考虑了原发性肿瘤的三个区域以及外周血单核细胞(PBMCS)(总共四个样品)的相应DNA,以评估肿瘤内遗传异质性对循环肿瘤DNA DNA(CTDNA)(CTDNA)(参考文本34)的影响。在该研究中,结果表明,肿瘤遗传异质性并不是CTDNA分析的主要障碍,前提是从肿瘤的单个区域中选择具有足够变异等位基因频率(VAF)的体突变。本研究中原发性肿瘤测序的最高优先级是检测一些具有高VAF的体细胞突变。此外,三个肿瘤区域中通常检测到的突变仅限于一组基因,其中包括TP53,APC,KRAS,PIK3CA,FBXW7和BRAF。
11:30 注册和便餐 12:30 欢迎和启动活动开幕 欢迎致辞 I Felix von Stetten 教授(nanodiag BW 发言人) Ulrich von Kirchbach(弗莱堡市第一任市长) Stefan Rensing 教授(弗莱堡大学研究与创新副校长) 主旨演讲:Sandra Hake 教授(吉森尤斯图斯-李比希大学遗传学研究所) Jan C. Behrends 教授(nanodiag BW 副发言人):我们的愿景和使命 欢迎致辞 II Lars Gerlitz 博士(联邦教育与研究部,BMBF) Claus Mayer(巴登 - 符腾堡州经济,劳动和住房部) Rainer Schmelzeisen 教授(弗莱堡医学中心副首席医疗官) Dr.-Ing. Roland Zengerle(弗莱堡大学工程学院院长) 13:40 合影 14:00 咖啡与交流 14:30 介绍集群及其项目 集群结构 项目 1:生物纳米孔分析仪 项目 2:固态纳米孔分析仪 项目 3:数字纳米孔测序仪 项目 4:集群管理和创新支持 15:30 咖啡与交流 16:00 启动“nanodiag BW 创新大赛” 16:10 介绍集群合作伙伴 18:30 介绍跨集群合作伙伴 Jens Anders 教授(“Qsens”发言人) Max Lemme 教授(“NeuroSys”发言人) Christine Neuy 博士(“microTEC südwest”董事总经理)约翰·汤普森 (“BioValley eV”董事会成员) 18:45 第一天闭幕词 19:00 在 Peterhofkeller 举行招待会和晚宴 20:30 顾问委员会介绍 Horst Domdey 教授“高科技集群中的技术转让”与顾问委员会成员进行小组讨论 21:30 甜点、饮料和交流 23:00 第一天结束
I。与合成和测序技术的发展一起,更多的研究组表明了体外DNA储存的潜力。参见例如[1],[2],[4],[5],[7],[13],[22],[23]。典型的DNA存储系统由三个组成部分组成:(1)包含编码数据的链的合成。在当前技术人员中,每个链都有数百万份,这些链的长度通常限制为250-300个核苷酸。 (2)存储合成DNA链的存储容器; (3)读取链的DNA测序仪,其中读取了测序计算机的输出序列。这种新颖的技术具有几种与数字同行根本不同的属性,而最突出的技术是错误的副本以无序的方式存储在存储容器中(请参见例如[12])。克服这一挑战的最常见解决方案是使用作为链的一部分存储的索引。相对于所有其他链,将每条链带有一些指示链的位置的核苷酸。这些索引通常使用错误校正代码(ECC)[2],[4],[11],[13],[22]保护这些指数。输入信息的检索通常由以下三个步骤完成。第一步是将所有读取分为簇中,以使每个群集的读取都是相同信息链的所有嘈杂副本。我们的观点第二步在每个群集上应用了重建算法,以检索原始输入链的近似值。在最后一步中,用于纠正其余错误并检索用户的信息。虽然以前的作品独立解决了每个步骤(例如,请参见[1],[2],[4],[13],[20],[22]),这项工作旨在将它们全部解决。这是通过限制DNA存储系统中的存储消息来完成的,因此对于任何两个输入消息,所有可能的输出的集合将是相互脱节的。我们称此代码为DNA校正代码。
摘要 - 尽管与DNA降低相关的费用正在迅速降低,但目前的成本约为1.3k/tb,这比今天现有的档案存储解决方案从现有的档案存储解决方案中阅读起来昂贵。在这项工作中,我们旨在通过研究DNA覆盖深度问题来减少DNA存储的成本,还要减少DNA存储的潜伏期,该问题旨在减少所需数量的读取数量以从存储系统中检索信息。在此框架下,我们的主要目标是了解如何将错误纠正代码与给定检索算法配对以最大程度地减少测序覆盖范围的深度,同时确保具有很高概率的信息。此外,我们研究了随机访问设置下的DNA覆盖深度问题。I。由于其显着的密度和耐用性,DNA是一种有前途的存储介质。任何DNA存储系统[1],[8],[17],[23]中的主要组件之一是DNA Sequencer,它可以读回用户的预存储信息。如今,DNA测序仪相对于其他替代存储技术的吞吐量相对较慢,并且成本相对较高[19],[24],[25]。这些问题与所谓的DNA储存覆盖深度有关,DNA存储的覆盖深度定义为所述的读数数量与合成寡核的数量之间的比率[12]。减少覆盖范围的深度可以改善任何现有的DNA存储系统的延迟,并降低其成本。简单地说,DNA覆盖深度问题旨在最大程度地减少覆盖深度,同时保持系统可靠性。是由覆盖深度,潜伏期和成本之间的联系的动机,在这项工作中,我们启动了对新问题的研究,被称为DNA覆盖深度概率。在这项工作中,我们研究了所需的覆盖深度作为DNA存储通道,错误校正代码和重建算法的函数。此外,我们试图了解如何将错误纠正的代码与给定的重建算法配对,以最大程度地减少覆盖范围的深度。将在随机和非随机访问设置下研究此问题。DNA覆盖深度问题与优惠券收集器(CCP),Dixie Cup和URN问题[7],[9],[10],[16]有关。对于所有这些问题,假定n种不同类型的优惠券,感兴趣的问题是人们在拥有每种类型的一张优惠券之前应收集多少优惠券。众所周知,如果优惠券是随机统一绘制的(重复),则预期
Course Contents: Unit 1 : PLC and I/O processing: 7L Programmable Logic Controller basics, overview of PLC systems – Architecture of PLC, Principle of Operation, input/output Units – power supplies and isolators, current sinking and current sourcing, types of PLC memory, fundamental PLC wiring diagram, relays, switches, transducers, sensors –seal-in circuits.输入/输出单位信号调理。远程连接网络处理输入I/O地址单元2:PLC编程:7L逻辑基础,PLC编程语言。梯形图,梯形图指令,逻辑功能,闩锁,多个输出。计时器和反类型以及定时图,换档寄存器,序列函数,闩锁指令;算术和逻辑指令,包括各种示例。打开/关闭开关设备,I/O模拟设备,模拟PLC操作,对连续过程的PID控制,简单的闭环系统,使用比例,积分和衍生工具(PID)单元3:PLC接口到各种电路的闭合环系统:7L编码器,传输器和先进的传感器。测量温度,流动,压力,力,位移,速度,水平的测量。开发梯子逻辑,用于测序电动机,储罐水平控制,开关温度控制,电梯,瓶装厂,停车场等。电动机控件:交流电动机启动器,交流电机超载保护,直流电机控制器,可变速度(可变频率)交流电动机驱动器。单元4:SCADA系统:7L简介,通信要求,SCADA系统的理想属性,功能,优势,缺点和SCADA的应用程序。2。SCADA体系结构(第一代 - 单片,第二代 - 分布式,第三代 - 网络体系结构),正在运行和控制互连电源系统的SCADA系统,电源系统自动化(自动变电站控制和电源分配)。单元5:HMI(人机接口):7L从HMI开始,创建应用程序,创建标签,下载 /上传程序,与PLC Open Systems InterConnection(OSI)模型,Process Field Bus(PROFIBUS)进行通信。SCADA与PLC,PLC接口和工业过程的接口示例参考书:1。Stuart A. Boyer:“ Scada-监督控制和数据获取”,美国仪器协会出版物,仪器系统和自动化协会,第4版,2010年。Gordon Clarke,Deon Reynders“实用的现代SCADA协议:DNP3,60870.5及相关系统”,Newnes,Elsevier Publications的烙印,第一版,2004年3。Batten G. L.,“可编程控制器”,McGraw Hill Inc.,第二版4。Gordan Clark,Deem Reynders,“实用的现代SCADA协议”,Elsevier 5。P. K. Srivstava,“具有应用程序的可编程逻辑控制器”,BPB出版物
单分子实时 (SMRT) DNA 测序技术 (Pacific Biosciences) 生成的长读段是高质量叶绿体 (1, 2) 和线粒体基因组序列组装的起点之一。栽培的葡萄树 Vitis vinifera 极易受到病原体的感染。抗性品种如种间杂交品种‘Börner’ (V. riparia GM183 [母株] V. cinerea Arnold [花粉供体]) 被用作培育优良葡萄品种的砧木。我们从 SMRT 读段中组装并注释了‘Börner’的叶绿体 (cp_Boe) 和线粒体 (mt_Boe) 基因组序列。除非另有说明,所有生物信息学工具均采用默认参数。从品种“Börner”的幼叶中提取基因组 DNA(3),并在 Sequel I 测序仪(1Mv3 SMRT 细胞、结合试剂盒 v3.0、测序化学 v3.0,均来自 PacBio)上进行测序。通过 BLASTN(BLAST 2.7.1)搜索(4)筛选质体或线粒体序列(RefSeq 版本 91),筛选出潜在的质体或线粒体读段。使用的标准如下:读段长度,500 个核苷酸(nt)以上;同一性,70% 以上;查询覆盖率,30% 以上。 292,574 个潜在质体读段(共 2,715,983,671 nt;N50,12,829 nt)和 426,918 个潜在线粒体读段(3,928,350,102 nt;N50,12,624 nt)分别用 Canu v1.7(5)进行组装。每个最长的重叠群都与 V. vinifera 的叶绿体(6)或线粒体(7)基因组序列具有高度相似性。随后,使用 Bandage(8)确认组装正确。手动修剪环状基因组中重叠的末端序列,并将起始序列与葡萄参考序列比对。用 Arrow(SMRT Link 版本 5.1.0.26412)对组装体进行三次完善。最后一轮精炼将起始点移至序列的相反位置。为了帮助注释,根据制造商的说明,使用 peqGOLD 植物 RNA 试剂盒 (Peqlab) 从“Börner”组织中提取 RNA。根据 TruSeq RNA 样品制备 v2 指南,从 1,000 ng 总 RNA 制备索引 Illumina 测序文库。将得到的转录组测序 (RNA-Seq) 文库以等摩尔量汇集,并在 HiSeq 1500 仪器上以 2 100-nt 双端格式进行测序。cp_Boe (161,008 bp;GC 含量,37.4%) 和 mt_Boe (755,068 bp;GC 含量,44.3%) 使用 Web 服务 GeSeq v1.66 进行注释(cp_Boe 的具体设置:
A.基因函数分析基于CRISPR的功能筛选(基因敲除或激活)将基因型的变化连接到表型输出,通常用于查找特定实验条件必不可少的基因。在这些测定中,使用了一个合并的慢病毒单导向(SG)RNA库,其中每个SGRNA都通过唯一的条形码识别。典型的屏幕涉及端点读取,其中NGS鉴定出不同实验条件的细胞群中SGRNA频率的变化。使用Illumina简短读取序列进行分析,以识别和量化每个独特的SGRNA的条形码。可以使用PACBIO Revio系统上的长阅读测序进行确认(如果需要),请确认靶向集成。这还将确定引入等位基因特异性CAS9裂解的任何遗传变异,例如单核苷酸变异(SNV)。B.整个基因组测序我们使用短或长读测序提供整个基因组测序能力。简短的读取测序提供更高的深度,通常更便宜,并且仍然是分析特征良好的基因组的有效途径。使用PACBIO Revio进行的长阅读测序提供了鉴定复杂的结构变化(大插入/缺失,反转,重复和重复以及易位)的优势,并且最适合于从头开始基因组组装以及将单核苷酸聚糖(SNP)逐渐变化为单位基因组(SNP)。C.来自细胞,组织或器官的大量基因表达分析大量RNA测序(RNA-SEQ)可以使不同条件之间的基因表达分析。可以使用整个转录组,整个外显子组或有针对性的测序选项。用于差异表达分析,使用短阅读技术对转录本(转换为cDNA)进行测序,以识别和量化RNA表达水平。用于映射全长同工型,以识别转录本的剪接变体或替代性开始点和端点或将SNP分配给特定的同工型,因此使用我们的长读PACBIO REVIO测序仪进行分析。D.在RNA或DNA测序之前,单细胞生物学分离单细胞或单核可以使基因表达,染色质结构和拷贝数改变在混合细胞群体内的单细胞水平上进行评估。也可以使用条形码进行谱系跟踪。NBCC中可用的10倍铬平台是核心技术,可以轻松有效地分配单个细胞映射。E.空间分析我们使用纳米弦的GEOMX数字空间分析器耦合到Illumina测序。剖面区域。通过新授予的CFI授予Wrana和Pelletier,我们将从10倍基因组学获得10倍的Xenium和10倍Xenium和visium HD功能。
补充方法 DNA 分离 使用自动 DNA 提取仪按照其协议(chemagic MSM I,PerkinElmer,美国马萨诸塞州沃尔瑟姆)从血液样本中分离 DNA。 使用试剂盒“EZ1&2 DNA Tissue”(Qiagen,德国希尔登)按照协议使用自动 DNA 提取仪 EZ1 Advanced XL(Qiagen)从羊膜细胞和绒毛中分离 DNA。 染色体微阵列(CMA) 使用 SureTaq DNA 标记试剂盒(Agilent,美国加利福尼亚州圣克拉拉)标记 DNA,并根据制造商的说明在 GenetiSure Cyto 4x180K CGH 微阵列(Agilent)上进行杂交。使用 InnoScan 910 AL 扫描仪(Innopsys,Carbonne,法国)扫描载玻片,并使用分析程序 Mapix(Innopsys)和 CytoGenomics 版本 5.1.2.1 和 5.3.0.14(Agilent)进行处理。使用参考基因组 GRCh38 评估数据。染色体分析和荧光原位杂交使用标准方法从肝素血样以及绒毛和羊膜细胞培养物中进行中期制备。简而言之,将来自肝素血样的细胞培养在含有植物血凝素作为有丝分裂原的 LymphoGrow 培养基(CytoGen,Sinn,德国)中,羊膜细胞培养在 Amniogrow plus 培养基(Cytogen,Sinn,德国)中,CVS 细胞培养在 Chang 培养基 D(Fujifilm,Minato,日本)中。固定后,将中期细胞滴到载玻片上,然后在 60 °C 下干燥过夜。使用核型分析系统 Ikaros(MetaSystems,德国阿尔特鲁斯海姆)通过 GTG 显带评估中期染色体的扩散情况。对于 FISH 分析,使用 Empire Genomics(美国纽约州布法罗)的探针 RP11-213E22-green 和 RP11-577D9-orange(7 号染色体)以及 RP11-358H10-green 和 RP11-241M19-orange(16 号染色体)。所有探针均按照制造商的说明使用。使用 Isis 数字成像系统(Metasystem Inc.,德国阿尔特鲁斯海姆)分析图像。 PCR 和测序 在适用的情况下,确认并进一步指定 OGM 分析中的断点,方法是使用 MinION 测序仪(Oxford Nanopore,英国牛津)进行第三代长距离测序,或使用 Hitachi 3500xL 基因分析仪(Thermo Fisher Scientific,美国马萨诸塞州沃尔瑟姆)进行 Sanger 测序。引物是根据 Dremsek et al., 2021 中描述的策略设计的。为了将引物定位得尽可能靠近预期的断点,OGM 数据和 CMA 数据都融入了其设计中。为了分析P1,进行了长距离PCR(连接点B/D*的扩增子:正向引物:5'-ggaggacaattttatcccccaggg-3'和反向引物:5'-gtgagccgtgagtttgccactat-3';连接点D*/B*的扩增子:正向引物:5'-tcgttgacggtgaaatgctacgt-3'和反向引物:5'-gcagataacggagtgaggaaggc-3')。PCR扩增后,使用引物 5' -acagctcactatagcagataggtgt- 3'、5' - ttgcatcaggaacatgtggacct- 3'、5' -ctggtcacaggcgcaaatcaaag- 3'、5' -gtcagcaaaggagagaagcagct- 3' 和 5' - gcaggttggctctttcccaagta- 3' 制备连接点 B/D* 的扩增子(大小为 4 kbp)进行 Sanger 测序。使用引物 5' -agggaaaagagatgtgtaaaatactgt- 3', 5' -agatgaggaagggcatctgac- 3', 5' -tcaagttgtcattgtggtgaatt- 3', 5' - cagatgccagcgctaagacgat- 3', 5' -aggttattacacacccctcct- 3', 5' -tgttcattatcactggccatcaga- 3', 5' -aaggggaaacctcctgctactct- 3', 5' - tgcacccactaacgtgtcatcta- 3', 5' -gggttggttccaagtctttgcta- 3', 5' -gctgaaactggatcccttcctta- 制备连接点 D*/B* 的扩增子(大小为 13 kbp),进行 Sanger 测序。 3'、5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动槽上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。
2 Google Quantum AI,加利福尼亚州戈利塔 超导量子处理器是最先进的量子计算技术之一。基于这些设备的系统已经实现了后经典计算 [1] 和量子纠错协议的概念验证执行 [2]。虽然其他量子比特技术采用自然产生的量子力学自由度来编码信息,但超导量子比特使用的自由度是在电路级定义的。当今最先进的超导量子处理器使用 transmon 量子比特,但这些只是丰富的超导量子比特之一;在考虑大规模量子计算机的系统级优化时,替代量子比特拓扑可能会证明是有利的。在这里,我们考虑对 Fluxonium 量子比特进行低温 CMOS 控制,这是最有前途的新兴超导量子比特之一。图 29.1.1 比较了 transmon 和 Fluxonium 量子比特。 transmon 是通过电容分流约瑟夫森结 (JJ) 实现的,是一种非线性 LC 谐振器,其谐振频率为 f 01,非谐性分别在 4-8GHz 和 200-300MHz 范围内。transmon 有限的非谐性约为 5%,限制了用于驱动量子比特 f 01 跃迁的 XY 信号的频谱内容,因为激发 f 12 跃迁会导致错误。以前的低温 CMOS 量子控制器通过直接 [3,4] 或 SSB 上变频 [5,6] 复杂基带或 IF 包络(例如,实施 DRAG 协议)生成光谱形状的控制脉冲;这些设备中高分辨率 DAC 的功耗和面积使用限制了它们的可扩展性。fluxonium 采用额外的约瑟夫森结堆栈作为大型分流电感。这样就可以实现 f 01 频率为 ~1GHz 或更低的量子比特,而其他所有跃迁频率都保持在高得多的频率(>3GHz,见图 29.1.1)[7]。与 transmon 相比,fluxonium 的频率较低且非谐性较高,因此可以直接生成低 GHz 频率控制信号,并放宽对其频谱内容的规范(但需要更先进的制造工艺)。在这里,我们利用这一点,展示了一种低功耗低温 CMOS 量子控制器,该控制器针对 Fluxonium 量子比特上的高保真门进行了优化。图 29.1.2 显示了 IC 的架构。它产生 1 至 255ns 的微波脉冲,具有带宽受限的矩形包络和 1GHz 范围内的载波频率。选择规格和架构是为了实现优于 0.5° 和 0.55% 的相位和积分振幅分辨率,将这些贡献限制在平均单量子比特门错误率的 0.005%。它以 f 01 的时钟运行,相位分辨率由 DLL 和相位插值器 (PI) 实现,而包络精度则由脉冲整形电路实现,该电路提供粗调振幅和微调脉冲持续时间(与传统控制器不同,使用固定持续时间和精细幅度控制)。数字控制器和序列器可播放多达 1024 步的门序列。图 29.1.2 还显示了相位生成电路的示意图。DLL 将这些信号通过等延迟反相器缓冲器 (EDIB) 后,比较来自电压控制延迟线 (VCDL) 的第一个和第 31 个抽头的信号。这会将 CLK[0] 和 CLK[30] 锁定在 180°,并生成 33 个极性交替的等延迟时钟信号。使用 CLK[30] 而不是 CLK[32] 来确保在 PFD 或 EDIB 不匹配的情况下实现全相位覆盖,这可能导致锁定角低于 180°。一对 32b 解复用器用于选择相邻的时钟信号(即 CLK[n] 和 CLK[n+1]),开关和 EDIB 网络用于驱动具有可选极性的 PI。 PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。