当今集成电路 (IC) 供应链的全球化带来了许多硬件安全问题。其中一个主要问题是硬件木马 (HT) 被纳入部署在安全关键和任务关键型系统中的 IC [1], [2]。HT 是对 IC 的故意恶意修改,旨在泄露有价值的数据、降低性能或导致完全故障,即拒绝服务。HT 可以在不同阶段插入片上系统 (SoC),例如由不受信任的 EDA 工具提供商、不受信任的 IP 供应商、插入测试访问机制的不受信任的 SoC 集成商或不受信任的代工厂插入。从攻击者的角度来看,目标是设计一个可以逃避光学逆向工程的最小占用空间 HT,以及在罕见条件下激活并隐藏在工艺变化范围内的隐身 HT,从而逃避通过传统制造测试检测。 HT 设计由两部分组成,即触发器和有效载荷机制。可能的 HT 种类繁多,从简单到非常复杂的攻击模式不等。最简单的 HT 是组合电路,用于监控一组节点,在罕见节点条件同时发生时生成触发器,随后,一旦触发器被激活,有效载荷就会翻转另一个节点的值。更复杂的 HT 包括硅磨损机制 [3]、隐藏侧通道 [4]、改变晶体管有源区域中的掺杂剂极性 [5]、从受害线路中抽取电荷 [6] 等。从防御者的角度来看,根据插入 HT 的阶段,有几种途径可以提供针对 HT 的弹性。对策可以分为硅前和硅后 HT 检测和信任设计 (DfTr) 技术。硅前 HT 检测技术包括功能验证和形式验证。硅片后 HT 检测技术包括光学逆向工程、旨在通过应用测试向量来揭示 HT 的功能测试,以及旨在通过 HT 对参数测量(即延迟、功率、温度等)的影响来揭示 HT 的统计指纹识别。DfTr 技术包括
关于 FDP:这个关于医学成像和信号处理应用的人工智能 (AI) 教师发展计划 (FDP) 将帮助教育工作者和研究人员了解 AI 基础知识以及它如何应用于具有多种安全应用的医学成像和信号处理技术。参与者将探索机器学习和深度学习概念,重点是将 AI 用于医学成像和信号处理技术,这有助于诊断、医疗保健、农业、零售和监控系统。AI 在图像/信号处理中发挥着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中使用不同算法有效使用 AI 的实用技能。在课程结束时,参与者将准备好将 AI 工具集成到他们的工作中,提高他们使用现代技术进行教学和解决安全挑战的能力。这将使参与者受益,提高他们在这些关键领域的专业知识和教学能力。主要课程内容:
本文研究了多媒体社区的勇敢新想法,并提出了一个新颖的框架,将梦想转化为使用fMRI数据的连贯的视频叙事。本质上,梦想已经吸引了人类数百年的历史,使我们的潜意识瞥见了我们的潜意识。大脑成像的最新进展,尤其是功能磁共振成像(fMRI),为探索梦的神经基础提供了新的方法。通过将主观梦的体验与客观的神经生理数据相结合,我们旨在了解梦想的视觉方面并创建完整的视频叙事。我们的过程涉及三个主要步骤:重建视觉感知,解码梦想图像和整合梦想故事。在fMRI分析和语言建模中使用创新技术,我们试图突破梦想研究的界限,并在睡眠期间对视觉体验进行更深入的了解。本技术报告介绍了一种新颖的方法,可以使用fMRI信号并将梦想视觉效果编织到使用语言模型的叙事中。我们收集了一个梦的数据集以及描述以评估框架的有效性。
摘要 - 物联网领域(IoT)中的杂货应用涉及跟踪人员和商品,其质量受室内位置精度影响的质量。信号方法的模式匹配,也称为特征指纹方法,是众多室内定位方法之一。由于存在嘈杂的环境情况,因此在定位中实现精度很容易中断。需要有效的稳定技术来减轻对本地化质量的负面影响。本研究介绍了几种新型机器学习方法和索引方法,旨在提高室内定位应用的准确性。遗传算法和部分最小二平方理论提议为此目的共同起作用。传统的指纹定位方法,例如粒子群优化(PSO),高斯模型还测试了验证目的。这种方法通过PSO算法试图近似接收信号强度指示器(RSSI)信号的噪声频谱,从而通过PSO算法来调整高斯模型的主要频率/振幅。与PSO/Gaussian模型指纹方法相比,遗传算法(GA)/部分最小二乘(PLS)/K-Nearest邻居(KNN)方法可以达到92%的室内定位精度,同时需要最小的开发时间。在复杂的实验室和走廊设置中,当目标位置验证程序中包括加权KNN算法时,总准确率可以达到95%,分辨率为16 cm。总体而言,我们建议的GA/PLS/KNN方法优于传统方法和基于许多无线技术的当前静态定位方法,例如WiFi,4G/5G,蓝牙低能(BLE)等。关键字 - 事物(IoT)本地化,粒子群优化(PSO)算法,部分最小二乘(PLS)算法,遗传算法(GA),智能定位
摘要 — 自动雷达信号识别 (RSR) 在电子战 (EW) 中起着关键作用,因为准确分类雷达信号对于为决策过程提供信息至关重要。深度学习的最新进展显示出在具有大量注释数据的领域中提高 RSR 性能的巨大潜力。然而,这些方法在注释 RF 数据稀缺或难以获得的 EW 场景中就显得不足了。为了应对这些挑战,我们引入了一种自监督学习 (SSL) 方法,该方法利用掩蔽信号建模和 RF 域自适应来增强 RF 样本和标签有限的环境中的 RSR 性能。具体而言,我们研究了对来自不同 RF 域的基带同相和正交 (I/Q) 信号进行预训练掩蔽自动编码器 (MAE),然后将学习到的表示转移到注释数据有限的雷达域。实证结果表明,与不使用 SSL 的基线相比,我们的轻量级自监督 ResNet 模型在域内信号(即雷达信号)上进行预训练时,1 次分类准确率可提高 17.5%,在域外信号(即通信信号)上进行预训练时,1 次分类准确率可提高 16.31%。我们还为几种 MAE 设计和预训练策略提供了参考结果,为少样本雷达信号分类建立了新的基准。索引术语 — 少样本、雷达信号识别、域自适应、自监督学习、掩蔽自动编码器
所有怀孕的大约10%受胎儿生长限制(FGR)的影响。FGR的主要病因是胎盘不足:胎盘不提供适当量的营养素和氧气。目前尚无FGR或胎盘功能不全的治疗方法。由于胎盘在FGR中的关键作用并为胎儿提供营养,因此为治疗性干预提供了绝佳的目标。使用豚鼠孕妇营养限制模型和重复的胎盘纳米粒子介导的IGF1处理,胎盘IGF1信号传导和养分传输途径的表征以了解FGR和治疗的变化。这项研究阐明了反复的胎盘纳米粒子介导的IGF1治疗导致胎儿生长的信号传导机制。总体而言,这项研究导致FGR和治疗组的胎盘内性别特异性激酶信号传导和营养转运蛋白变化。与我们先前使用此治疗的研究相结合,我们证明了这种治疗方法的基本分子信号传导,并概括了该疗法以实现未来人类翻译的合理性。
投机性疯狂和非理性的旺盛导致引入了新的杠杆技术。叙事从基本的基本面转变为快速利润的潜力。猜测接管了贪婪,FOMO和牛群的心态。有些人可能将其称为庞氏骗局,但是好的庞氏骗局通常基于一个被广泛接受的真理。外来的郁金香是独特的罕见。无线电和汽车在1920年代彻底改变了生产力。在1990年代后期,尽管经济放缓,科技公司仍被视为弹性增长引擎。那些参与的人通常被标记为小人,但通常对他们促进的资产有真正的信念。在2006年,抵押经纪人有50年的数据支持他们的观点,即我们从未发生过全国住房危机,因此推动杠杆产品的风险很小。
摘要。数十亿人使用 Signal 协议在 Facebook Messenger、Google Messages、Signal、Skype 和 WhatsApp 等应用程序中进行即时通讯。然而,量子计算的进步威胁到该协议基石的安全性:Diffi-Hellman 密钥交换。实际上存在抗性替代方案,称为后量子安全,但用这些新原语替换 Diffi-Hellman 密钥交换需要对相关的安全性证明进行深入修订。虽然当前 Signal 协议的安全性已经通过手写证明和计算机验证的符号分析得到了广泛的研究,但其抗量子变体缺乏符号安全性分析。在这项工作中,我们提出了 Signal 协议后量子变体的第一个符号安全模型。我们的模型专注于 Signal 的两个主要子协议的核心状态机:X3DH 握手和所谓的双棘轮协议。然后,我们利用 Tamarin 证明器的自动证明,使用 PKC'21 中的 Hashimoto-Katsumata-Kwiatkowski-Prest 后量子 Signal 握手和 EUROCRYPT'19 中的 Alwen-Coretti-Dodis KEM 双棘轮实例化,由此产生的后量子 Signal 协议具有与其当前经典对应协议相同的安全属性。
可靠的脑电图(EEG)信号获取对于医疗疾病,脑机构界面(BCIS)和神经科学研究至关重要。然而,心电图(ECG)和电解图(EOG)伪像经常污染EEG记录,损害数据质量和解释性。传统的删除方法可能会扭曲脑电图信号,或需要其他传感器进行ECG和EOG获取。本研究使用多元预测方法将删除伪像作为回归任务,从EEG数据本身重建ECG和EOG信号。我们的方法在两个独立数据集上进行了严格评估,用于ECG和EOG信号,并在不同个体的未见数据上进一步验证。使用平方误差(MSE),平均绝对误差(MAE)和峰值信噪比(PSNR)评估性能。我们的方法实现了与使用实际的ECG和EOG记录的常规方法相媲美的方法,证明了使用原始EOG记录清洁清洁的脑电图和脑电图之间的PSNR为39 dB。这使我们的方法成为经济高效且非侵入性的替代方案。这些发现提出了脑电图噪声过滤研究的有希望的新方向。
心脏病占全球死亡人数的30%。早期干预和心血管异常的检测可以预防这种死亡。当前的研究提出了一种新的方法,该方法将卷积神经网络(CNN)和长期记忆(LSTM)结合在一起,以预测人心脏功能中异常。机器学习模型用于检测来自ECG和PCG信号的异常。这项研究中使用了两个突出的数据集,即Physionet 2016和Physionet 2017,用于培训和测试开发的机器学习模型。经验模式分解已用于预处理心脏声音信号和心电图信号。使用EMD可以将信号分解为其基本振荡组件,称为固有模式函数(IMF)。通过将信号与噪声比值与原始和过滤的PCG信号进行比较,可以评估该方法在降低噪声方面的有效性。特征提取是通过生成DeNO.信号的缩放图完成的。缩放图是通过连续小波变换(CWT)获得的。此后,一种称为CNN-LSTM的混合深度学习技术用于分类和训练模型。所提出的模型在分类和检测人心脏功能异常方面的精度为86%。