在发生内部短路的情况下,使用Dual-Fuse和Auxilariary Crowbar开关断开故障的腿,然后是备用腿(图。1,红色虚线框)自发连接,从而可以连续操作。为了提高系统的可靠性和紧凑性,可以在功率半导体[5],[6]组件(IGBTS,MOSFET等)上单层整合使用的熔断器,如图1(Fuse-On-transistor,蓝色虚线框)。在功率上的保险丝的集成分两个步骤进行了半导体组件。首先,熔断器,称为“独立保险丝”(图1,绿色虚线盒),由硅基板上的薄铜层(18 µm)制成,以研究组件的热和电气行为。
• Complementary metal-oxide-semiconductor (CMOS) image sensors and charge coupled devices (CCD) • Image sensor design and customization • Sensor characterization and calibration • Radiation damage effects in space • Interaction of radiation with matter, shielding • Semiconductor physics and device simulations • Cryogenics and vacuum • Electronics
放射治疗 (RT) 的主要挑战是向肿瘤提供足够高的治疗剂量,同时保持附近器官受到可耐受的剂量,新的治疗方式正在迅速涌现。FLASH 放射治疗提供的治疗剂量比传统 RT(0.05 Gy/s)快几个数量级(≥40 Gy/s),并且已被证明可以降低正常组织发生并发症的可能性,同时提供与传统剂量率相似或更好的肿瘤控制率,减少治疗时间和器官运动相关问题。然而,FLASH RT 的临床实施面临着重大挑战,因为它的要求使得大多数现有的剂量测定设备已过时。碳化硅 (SiC) 的物理特性使其成为一种有趣的辐射剂量测定材料。SiC 的宽带隙降低了热产生电荷载流子的速率,从而与硅相比降低了漏电流和噪声。特别值得注意的是,SiC 每 mGy 沉积的信号产量(4H-SiC 为 425 pC/(mGy · mm3))低于硅。这使得 SiC 成为超高剂量脉冲辐射场或直接光束监测剂量测定的良好选择,其中半导体中的瞬时剂量沉积很大,可能会使传统硅二极管饱和。此外,SiC 具有更高的位移能量阈值,因此辐射硬度高于硅。如今,SiC 技术已经成熟,高质量基板可达 200 毫米,可广泛使用。在本次演讲中,我们将介绍在 IMB- CNM 设计和制造的新型碳化硅 PiN 二极管,旨在应对 FLASH RT 的技术挑战。在 PTB(德国)使用 20 MeV FLASH 电子束进行的首次表征中,这些二极管显示出其适用于高达每脉冲 11 Gy(4 MGy/s)剂量的相对剂量测定,且剂量测定性能可与商用金刚石剂量计相媲美 [doi:10.1088/1361-6560/ad37eb]。在 CMAM(西班牙)使用 7 MeV 质子测试了带有 FLASH 质子束的 SiC 二极管的性能,结果显示它们与剂量率具有良好的信号线性度,并且每脉冲剂量至少为 20 Gy 时响应可重复。最后,在 CNA(西班牙)使用高 LET、强脉冲质子束研究了二极管的抗辐射性。二极管的灵敏度在 1 MeV 质子中以 -1.34%/kGy 的初始速率逐渐下降,并且仅在接近 750 kGy 的剂量下才稳定下来。然而,即使累积剂量为几 MGy,每脉冲剂量的线性响应在很宽的剂量率范围内也能保持。所有这些测量都是在无需外部施加电压的情况下进行的。总之,在 IMB-CNM 制造的碳化硅二极管是硅和金刚石剂量计的真正替代品,适用于需要精确实时相对剂量测定的广泛应用,要求快速响应和长期稳定性。
这项研究研究了在声学应用中使用基于碳化硅的分层表面声波(SAW)设备的可行性。通过理论分析研究了温度稳定的层状结构TEO 3 /SIC /128 O Y-X Linbo 3的声学特性。此分析包括对关键参数的评估,例如重叠积分,功绩图和衍射效率。使用SAW软件获得了这些计算所需的SAW传播特性和字段填充。结果表明,分层结构具有近96%的较高衍射效率,并且值得良好的声学数字有希望的值,这表明在低驱动功率声音器件设备中的潜在用途。该研究得出结论,基于3C E的分层结构具有出色的声学特性,并且具有可以承受恶劣环境条件的声学设备中使用的潜力。
摘要:抗生素主要是人类健康的重要分子。抗生素发现黄金时代后,随后发生了下降时期,其特征是同一分子的重新发现。同时,新的培养技术和高通量测序使发现新的微生物,这些生物代表了有趣的新型新抗菌物质的潜在来源。这篇综述的目的是呈现最近发现的非核糖体肽(NRP)和聚酮化合物(PK)分子,具有抗微生物活性针对人类病原体。我们强调了导致其发现的硅/体外策略和方法的不同。由于技术进步以及对NRP和PK合成机制的更好理解,这些新的抗生素化合物为人类医疗方面提供了一种额外的选择,并且可以摆脱抗生素耐药性的潜在方法。
摘要使用带有电热模型的TCAD-Santaurus工具设计和优化了基于GAN纳米线的新垂直晶体管结构。具有准1D漂移区域的研究结构适用于在高度N掺杂的硅底物上与自下而上方法合成的GAN纳米线。对电性能的研究是各种Epi结构参数的函数,包括区域长度和掺杂水平,纳米线直径以及表面状态的影响。结果表明,优化的结构具有正常的阈值模式,其阈值电压高于0.8 V,并且表现出最小化的泄漏电流,州电阻较低,并且最大化的击穿电压。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。
索引术语 - 生物信息学,实验验证,基因表达,蛋白质 - 蛋白质相互作用,CRISPR,下一代测序,人工智能,多摩学,计算预测摘要 - 从了解生物学预测和实验验证在促进生物学的策略方面扮演生物信息信息预测和实验验证的作用。生物信息学工具和方法为预测基因功能,蛋白质相互作用和调节网络提供了有力的手段,但是必须通过实验方法来验证这些预测以确保其生物学相关性。本综述探讨了用于实验验证的各种方法和技术,包括基因表达分析,蛋白质 - 蛋白质相互作用验证和途径验证。我们还讨论了将计算预测转化为实验环境的挑战,并强调了生物启发性和实验研究之间协作的重要性。最后,新兴技术,例如CRISPR基因编辑,下一代测序和人工智能,正在塑造生物信息学验证的未来,并推动更准确,更加精确的生物学发现。
索引词——生物信息学、实验验证、基因表达、蛋白质-蛋白质相互作用、CRISPR、下一代测序、人工智能、多组学、计算预测摘要——生物信息学预测和实验验证的结合在推动生物学研究中起着关键作用,从理解分子机制到制定治疗策略。生物信息学工具和方法为预测基因功能、蛋白质相互作用和调控网络提供了强有力的手段,但这些预测必须通过实验方法来验证,以确保其生物学相关性。本综述探讨了用于实验验证的各种方法和技术,包括基因表达分析、蛋白质-蛋白质相互作用验证和通路验证。我们还讨论了将计算预测转化为实验环境所面临的挑战,并强调了生物信息学与实验研究合作的重要性。最后,CRISPR 基因编辑、下一代测序和人工智能等新兴技术正在塑造生物信息学验证的未来,并推动更准确、更高效的生物学发现。
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。