胰腺导管腺癌(PDAC)是一种致命疾病,由于诊断晚期而无法治愈,这使任何具有治疗性干预措施具有挑战性。大多数PDAC患者减轻了从头糖尿病,这会加剧其发病率和死亡率。PDAC如何触发糖尿病仍在展开。使用KRAS G12D驱动的PDAC的小鼠模型,该模型忠实地概述了人类疾病的进展,我们观察到β细胞的大量和选择性耗竭,很早就出现在癌性病变的阶段。从机械上讲,我们发现PDAC pRogres-sion期间TGFβ(TGF-β)信号传导增加导致β细胞质量通过凋亡侵蚀。通过TGF-β免疫中性化或遗传通过删除SMAD4或TGF-βII型受体(TβRII)在药理学上按下TGF-β信号传导,从而对PDAC驱动的β-Cell Depetion提供了实质性保护。从转化的角度来看,TGF-β信号传导的激活和β细胞的耗竭经常出现在人类PDAC中,为PDAC患者的糖尿病发病提供了一种机械解释,并进一步暗示新的糖尿病是PDAC的潜在预后标记。
摘要:糖尿病肾病 (DN) 是糖尿病最严重的长期影响之一,影响超过 30% 的患者。在患病肾脏中,肾小球内系膜细胞在促进细胞外基质成分的促纤维化周转和促进肾小球增生方面起着关键作用。这些病理影响部分是由可溶性鸟苷酸环化酶 (sGC) 功能受损以及抗纤维化信使 3′,5′-环鸟苷酸单磷酸 (cGMP) 合成减少引起的。Bay 58-2667 (cinaciguat) 能够重新激活有缺陷的 sGC;然而,该药物的生物利用度较差,全身给药与严重低血压等不良事件有关,这可能会妨碍治疗效果。因此,在本研究中,西那西呱被有效地封装到病毒模拟纳米颗粒 (NP) 中,这种纳米颗粒能够特异性地靶向肾系膜细胞,从而增加细胞内药物的积累。因此,NP 辅助药物输送使西那西呱诱导的 sGC 稳定和活化以及相关的下游信号在体外的效力提高了 4 到 5 倍。此外,载药 NP 的给药显著抑制了非典型转化生长因子 β (TGF- β ) 信号通路,并抑制了由此产生的 50-100% 的促纤维化重塑,使该系统成为一种有前途的工具,可用于更精细地治疗 DN 和其他相关的肾脏病变。
抽象的静止胰腺星状细胞(PSC)仅代表胰腺组织的比例很低,但是它们的激活导致基质重塑和与慢性胰腺炎和胰腺导管性性阴性性腺瘤瘤(PDAC)相关的病理学相关的纤维化(PDAC)。PSC激活可以通过各种应力诱导,包括酸中毒,生长因子(PDGF,TGFβ),缺氧,高压或与胰腺癌细胞的细胞间通信。激活的PSC靶向代表了一种有希望的治疗策略,但是关于PSC激活的基础的分子机制知之甚少。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。 离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。 他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。 但是,它们在PSC激活中的作用尚未完全理解。 在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。但是,它们在PSC激活中的作用尚未完全理解。在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。
摘要:前胰岛素(PPI)和免疫调节剂(TGFβ +IL10)的联合疗法通过遗传改性的沙门氏菌和抗CD3口服,抗CD3促进了NOD小鼠的葡萄糖平衡。修饰沙门氏菌细菌以表达与细菌启动子控制的糖尿病相关的抗原PPI以及过表达的免疫调节分子。该疫苗限制自动糖尿病的可能作用机制仍然不确定。在小鼠中,疫苗阻止并逆转了持续的糖尿病。疫苗介导的有益作用与脾脏和治疗小鼠的抗原抗原特异性CD4 + CD25 + FOXP3 + Treg,CD4 + CD49B + LAG3 + TR1细胞和耐受性树突状细胞(TOL-DC)相关。尽管如此,对沙门氏菌感染的免疫反应并未改变。此外,疫苗作用与胰岛浸润淋巴细胞的降低和胰岛β细胞质量增加有关。这与耐多因子(IL10,IL2和IL13)和趋化因子配体2(CCL2)(CCL2)以及炎性细胞因子(IFNγ,GM-CSF,IL6,IL6,IL12和TNFα)和趋化因子(CXCL1和CXCL1,CXCL1,CXCL1,CXCL1,CXCL1,CXCCL1,CXCCL1,CXCCL1和CXCL1,CXCCL1,CCL1,CCL1,CCL1,CCL1,CCL1和CXCL1,这都与降低的血清水平水平和趋化因子配体2(CCL2)(CCL2)(CCL2)和降低有关。 总体而言,数据表明,基于沙门氏菌的疫苗可调节免疫反应,减少炎症,并促进对参与自身免疫性糖尿病的抗原的耐受性。这都与降低的血清水平水平和趋化因子配体2(CCL2)(CCL2)(CCL2)和降低有关。总体而言,数据表明,基于沙门氏菌的疫苗可调节免疫反应,减少炎症,并促进对参与自身免疫性糖尿病的抗原的耐受性。
简介 Toll 样受体 (TLR) 可识别病原体相关分子模式 (PAMP),并通过诱导促炎蛋白的表达做出反应 (1)。PAMP 与 TLR 的结合导致受体近端信号复合物的形成,该复合物由 TIR 结构域衔接蛋白、IL-1 受体相关激酶 (IRAK) 和 E3 泛素连接酶 TNF 受体相关因子 6 (TRAF6) (2) 组成。TRAF6 的激活会导致其自身泛素化并形成未锚定的多泛素链,从而募集 TGF β 活化激酶 1 (Tak1) 并激活下游转录因子 NF- κ B 和 MAPK 通路,从而驱动炎症基因表达 (3)。 Toll 通路中进化保守的信号中间体 (Ecsit) 最初被描述为通过与 TRAF6 (4) 相互作用而对 NF- κ B 产生正向调节作用的物质,最近的报告也表明它与 Tak1 (5) 和 NF- κ B 蛋白 (6) 相互作用。Ecsit 的突变形式强烈激活 NF- κ B,已被证明可驱动炎症性疾病 (7)。其他研究已将 Ecsit 鉴定为线粒体电子传递链中复合物 I 的一部分 (8–11)。N 端线粒体定位序列将 Ecsit 引导至线粒体,以促进复合物 I 的组装。此外,在感染
图 1 hiPSC-NSC 的生成和核型分析。A、在 Matrigel 上生长的 R-iPSC4-hiPSC 菌落。B、用胶原酶 IV 消化 hiPSC 后形成的胚状体 (EB)。C、用 TGF β 抑制剂 SB421543 和 BMP 抑制剂 dorsomorphin 处理的 EB 接种到聚-l-鸟氨酸和层粘连蛋白包被的板上后 7-10 天出现玫瑰花结状结构。D、通过解离玫瑰花结状结构并接种到聚-l-鸟氨酸和层粘连蛋白包被的板上获得神经外胚层细胞。E、F、这些细胞表达 NSC 标记物 Nestin (E) 并在分化第 30 天分化为表达微管相关蛋白 2 (MAP2) 的神经元 (F)。细胞核用 Hoechst 33342 (蓝色) 染色。比例尺:100 µ m。G、H、基于全基因组 SNP 阵列的 hiPSC-NSC 核型分析。针对位于该区域的阵列上所有 SNP,绘制了每条染色体的 B 等位基因频率(上图)和 log 2 R 比率(下图)。每个点都是一个 SNP。虽然第 10 代(p10)的细胞没有显示任何主要核型异常(G),但 p16 的 hiPSC-NSC 表现出 1 号染色体整个长臂的重复,dup(1)q(H)
缩写:AASLD,美国肝病研究协会;ALT,丙氨酸氨基转移酶;ASO,反义寡核苷酸;CAM,衣壳组装调节剂;cccDNA,共价闭合环状DNA;ChAdOx1-HBV/MVA-HBV,编码多种 HBV 抗原的黑猩猩腺病毒和改良痘苗安卡拉病毒载体;CHB,慢性乙型肝炎感染;EASL,欧洲肝脏研究协会;ETV,恩替卡韦;GalNac 共轭 LNA SSO,N-乙酰半乳糖胺共轭锁核酸单链寡核苷酸;HBcrAg,乙型肝炎核心相关抗原;HBeAg,乙型肝炎 BE 抗原;HBsAg,乙型肝炎表面抗原;HBV,乙型肝炎病毒;HCC,肝细胞癌;IFN,干扰素; MDSC,髓系抑制细胞;NA,核苷(酸)类似物;NAP,核酸聚合物;NK 细胞,自然杀伤细胞;NTCP,牛磺胆酸钠共转运多肽;PD-1,程序性死亡受体-1;PDL-1,程序性细胞死亡配体-1;pegIFN α,聚乙二醇化干扰素α;pgRNA,前基因组RNA;siRNA,小干扰RNA;STOP,S-抗原运输抑制寡核苷酸聚合物;TAF,替诺福韦艾拉酚胺;TCR,T 细胞受体;TDF,富马酸替诺福韦二吡呋酯;TGF,转化生长因子;TLR,Toll 样受体。
心脏纤维化是心力衰竭的一个主要特征,目前尚无有效的治疗方法。40 使用三维人体模型和尖端生物技术来评估新 41 疗法提供了重大进展。CTPR390 是一种针对 Hsp90 的实验性抗纤维化抑制剂 42,已在动物模型中取得成功,但在人类 43 心脏模型中仍未得到探索。本研究评估了用 CTPR390 处理的心脏三维工程结缔组织 44 (ECT) 模型,重点关注细胞外基质和 45 成纤维细胞的变化。结果表明,CTPR390 可防止 TGFβ1 激活的 46 ECT 中的结构变化,保留组织周长、胶原纤维排列,同时降低 47 结构化区域的百分比和胶原结构化程度。此外,该治疗减少了张力下拉长成纤维细胞的细胞 48 面积,而没有张力的内部圆形细胞 49 则没有发生变化。成纤维细胞向张力区域的募集减少,显示出与对照 ECT 相似的 50 生物力学行为。这种治疗还降低了关键促纤维化标志物的基因和 51 蛋白质表达。首次采用先进的生物技术 52 检测施用 53 CTPR390 后组织纤维化减少的详细结构,代表了心脏 54 纤维化治疗临床应用的重大进步。 55
据报道,用 BMP4 和 TGF β 信号抑制剂 (A83-01) 和 FGF 信号抑制剂 (PD173074)(称为 BAP)处理的人类胚胎干细胞 (hESC) 可以在体外有效分化为胚外 (ExE) 细胞。由于无法获得人类胚胎,从伦理上讲不可能在体内测试 ExE 细胞的发育潜力。在这里,我们证明大多数 ExE 细胞表达滋养层细胞 (TB) 和羊膜细胞 (AC) 的分子标记。宫内移植后,ExE 细胞会形成小鼠胎盘。更有趣的是,ExE 细胞可以与小鼠囊胚嵌合,因为在注射到囊胚后,它们会穿透其滋养外胚层。将注射的囊胚植入代孕小鼠体内后,在 E14 时在胎盘迷路、连接区甚至子宫蜕膜附近发现了人类细胞,这些细胞表达胎盘标志物并分泌人绒毛膜促性腺激素。令人惊讶的是,ExE 细胞也对嵌合胚胎的软骨有贡献,其中一些表达软骨标志物 SOX9,这与胎盘中 TB 和 AC 的中胚层潜力相一致。删除中胚层决定因子 MSX2 会限制 ExE 细胞对胎盘的贡献。因此,我们得出结论,hESC 衍生的 ExE 细胞可以与小鼠囊胚嵌合,并对嵌合体的胎盘和软骨都有贡献,这与它们的异质性一致。宫内和囊胚内注射是研究 ExE 细胞发育潜力的新颖而灵敏的方法。
血管提供了一种多功能且适应性强的运输系统,但最近的研究已经证实,构成血管网络最内层的内皮细胞也是控制周围组织中其他细胞类型行为的分子信号来源。周细胞是血管壁的另一个重要组成部分,但人们对它们在器官生长和模式形成过程中与其他细胞群的信号相互作用知之甚少。在这里,我们使用组织特异性和可诱导小鼠遗传学、高分辨率成像、单细胞 RNA 测序和细胞培养实验来解决三种周细胞衍生的生长因子在两种模型器官(即肺和脑)的出生后发育中的作用。我们发现 Pdgfrb-CreERT2 控制的肝细胞生长因子 (HGF) 基因失活不会导致出生后大脑发生明显改变,但由于与 AT2 上皮细胞的相互作用缺陷,会损害肺泡形成。同样,周细胞表达脑源性神经营养因子 (BDNF) 不是出生后大脑所必需的,但通过与肺内皮细胞中的受体酪氨酸激酶 TrkB 相互作用来控制肺部发育。相反,周细胞表达 TGFβ 家族生长因子 Nodal 不是肺形态形成所必需的,但调节出生后大脑的血管生长和屏障功能,我们将其归因于与内皮细胞、星形胶质细胞和小胶质细胞的信号相互作用。总之,我们的研究结果表明,周细胞是血管分泌信号的重要来源,这些信号以器官特异性方式控制形态形成过程。