摘要 TLR 的一个子集专门通过对内体进行核酸检测来检测进入的病原体。其中,TLR3 感知内体中双链 RNA 的异常存在,并通过激活 NF- j B 和 IRF3 启动强大的先天免疫反应。然而,控制 TLR3 调节的机制仍然不甚明了。为了确定参与 TLR3 通路的新分子参与者,我们使用 CRISPR/Cas9 技术进行了全基因组筛选。我们生成了携带 NF- j B 反应启动子的 TLR3 + 报告细胞,该启动子控制 GFP 表达。接下来用单向导 RNA (sgRNA) 文库转导细胞,用 poly(I:C) 进行连续刺激,并对 GFP 阴性细胞进行分类。通过深度测序估计的 sgRNA 富集确定了 TLR3 诱导的 NF-j B 激活所需的基因。在这些基因中,通过筛选确定了五个已知与 TLR3 通路密切相关的基因,包括 TLR3 本身和伴侣 UNC93B1,从而验证了我们的策略。我们进一步研究了前 40 个基因,并重点研究了转录因子芳烃受体 (AhR)。AhR 的消耗对 TLR3 反应有双重影响,消除了 IL-8 的产生并增强了 IP-10 的释放。此外,在暴露于 poly(I:C) 的原代人巨噬细胞中,AhR 激活增强了 IL-8 并减少了 IP-10 的释放。总体而言,这些结果表明 AhR 在 TLR3 细胞先天免疫反应中发挥作用。
溃疡性结肠炎(UC)是一种慢性炎症性肠病(IBD),其特征是大肠的粘膜内膜持续炎症,导致症状令人衰弱和生活质量降低。新兴证据表明,肠道菌群的失衡在UC发病机理中起着至关重要的作用,并且各种信号通路与免疫反应失调有关。益生菌是给宿主带来健康益处的活微生物,引起了人们对恢复肠道微生物平衡和改善UC炎症的潜力的极大关注。最近的研究阐明了益生菌调节这些信号通路的机制,通常是通过产生抗炎分子并促进调节性免疫细胞功能。例如,益生菌可以通过稳定Kappa B alpha(IκBα)的抑制剂来抑制核因子-κB(NF-κB)途径,从而抑制促炎细胞因子的产生。同样,益生菌可以调节Janus激酶/信号转录器和转录激活因子(JAK/STAT)信号通路,从而抑制了STAT1和STAT3的激活,从而减少了炎症反应。在调节UC中调节致病信号通路时,更好地理解益生菌的潜在机制将为开发更有效的基于益生菌的疗法铺平道路。In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF- κ B, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/ β -catenin, the nucleotide-binding domain (NOD)-, leucine- rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3)UC中的炎性体,Toll样受体(TLR),白介素23(IL-23)/IL-17信号通路。
这篇综合综述探讨了人类对疟疾的复杂免疫反应,疟疾是由疟原虫引起的一项重大的全球健康挑战。先天和适应性免疫系统在抵御疟疾方面发挥着关键作用,其机制涉及各种免疫细胞,如树突状细胞、自然杀伤细胞、嗜酸性粒细胞、嗜碱性粒细胞、T 细胞和 B 细胞。这些细胞以动态相互作用的方式运作,识别寄生虫并在其生命周期的不同阶段对其作出反应。我们的综述从方法论上分析了最近关于疟疾免疫反应的研究和文献,重点关注不同免疫细胞的作用以及细胞因子和抗体的产生。我们还探讨了疟疾的流行病学,特别关注印度尼西亚等地区,那里的气候、地理和社会经济因素影响传播动态。研究结果强调了先天免疫系统在早期病原体检测和反应中的关键作用,特别是通过 PAMP 被 PRR(如 TLR 和清道夫受体)识别。此外,还强调了适应性免疫反应的复杂性,包括抗子孢子抗体和 T 细胞免疫,特别是在识别寄生虫输出抗原和发展长期免疫的记忆反应方面。免疫反应的复杂性,加上由于寄生虫复杂的生命周期和不同的流行病学模式而导致的疫苗和疗法开发方面的挑战,强调了在疟疾免疫学和公共卫生战略方面继续研究和创新的必要性。本综述有助于更深入地了解抗疟疾的免疫机制以及控制和根除这种普遍疾病的持续努力。
肠道微生物群 (GM) 由胃肠道中的数万亿微生物组成,是肥胖和相关代谢紊乱(如 2 型糖尿病 (T2D)、代谢综合征 (MS) 和心血管疾病)发展的关键因素。这篇小型综述深入探讨了 GM 在这些疾病中的复杂作用和机制,为针对微生物群的潜在治疗策略提供了见解。该综述阐明了人类 GM 的多样性和发展,强调了其在宿主生理学中的关键功能,包括营养吸收、免疫调节和能量代谢。研究表明,GM 失调与能量提取增加、代谢途径改变和炎症有关,导致肥胖、MS 和 T2D。探讨了饮食习惯和 GM 组成之间的相互作用,强调了饮食对微生物多样性和代谢功能的影响。此外,该综述还讨论了常用药物和粪便微生物群移植等治疗干预措施对 GM 组成的影响。迄今为止的证据支持进一步研究以确定 GM 调节在减轻肥胖和代谢疾病方面的治疗潜力,强调临床试验以建立有效和可持续的治疗方案的必要性。关键词:肠道微生物群、肠道微生物组、肥胖、代谢综合征、 2 型糖尿病缩写:A. muciniphila、Akkermansia muciniphila;BCAA、支链氨基酸;CAG、同丰度组;F/B、厚壁菌门/拟杆菌门;FMT、粪便微生物群移植;GDM、妊娠期糖尿病;GIT、胃肠道;GLP-1、胰高血糖素样肽 1;GM、肠道微生物群;GPCR、G 蛋白偶联受体;IL、白细胞介素;IR、胰岛素抵抗;LPL、脂蛋白脂肪酶;LPS、脂多糖;MS、代谢综合征;P. copri、普氏菌; PYY,肽YY;SCF,短链脂肪酸;TLR,Toll样受体;T2D,2 型糖尿病。
心血管疾病是目前全球范围内危害最大的疾病类型,传统的心血管疾病危险因素包括高血压、高脂血症、糖尿病、肥胖、吸烟等(1)。研究表明,加强危险因素控制、减少危险因素的暴露可以显著降低心血管疾病的发病率和死亡率(2-4)。然而,即使严格控制传统危险因素,仍有相当一部分患者面临发生心血管事件的高风险,因此迫切需要寻找新的致病因素。氧化三甲胺(TMAO)是肠道菌群的代谢产物,在心血管疾病的发病中起着重要作用。一项包括4007例患者的大型队列研究发现,心血管疾病患者(5.0µM)和健康个体(3.5µM)的血浆TMAO水平存在差异。在传统心血管疾病危险因素相同的前提下,血浆三甲胺氧化物水平高(> 6.18 µM)的患者3年内主要不良心血管事件发生率高于血浆三甲胺氧化物水平低的患者(5),提示三甲胺氧化物可能是心血管疾病的一个新危险因素。动脉粥样硬化(AS)是最常见的心血管疾病之一,给各国带来巨大的社会和经济负担。研究表明,AS与脂质代谢紊乱、炎症反应、氧化应激等病理改变密切相关(6,7)。近期研究证实,肠道菌群紊乱可通过代谢和免疫系统引起代谢疾病和炎症反应,导致动脉粥样硬化斑块形成和破裂(8,9)。其他研究表明,大肠杆菌中的脂多糖 (LPS) 可以通过 Toll 样受体 (TLR)4 介导的白细胞蛋白酶 G 激活来增强血小板聚集,并且 LPS 的多种效应可能汇聚在一起
全身性红斑狼疮(SLE)是一种无法治愈的自动Mune B细胞疾病,部分是由于核抗原的无效清除和TLR途径的激活。抗体分泌细胞(ASC)的毛囊外(EF)途径被认为在小鼠和人类的致病性抗体中起着重要作用。例如,在小鼠(年龄相关的B细胞)和人(DN2细胞)中鉴定出的CD21 LO CD11C + B细胞的新型种群被认为是自动反应性EF ASC的主要来源。但是,EF ASC的发育动力学和细胞来源仍未开发。为了跟踪B细胞破裂和EF ASC生成的早期事件,建立了一种收养转移系统,其中WT B细胞被转移到富含核抗原的富含核抗原的自动反应性BCR BCR转基因564IGI宿主中。通过引入WT和TLR7缺陷B细胞的竞争种群,我们证明了EF ASC的分化需要TLR7。检查自动反应性B细胞增殖和EF ASC分化的动力学,使用了细胞跟踪标记方法。我们发现,供体B细胞至少需要7个分区才能区分EF ASC,并且TLR7缺乏的B细胞在每个分裂的WT逐渐胜过。相关地,CD21 LO CD23 -B细胞高度增殖,表达CD11C,并且对TLR7缺陷敏感。我们的解释是它们可能是EF ASC的直接发展前代。CD21的损失是通过受体阻滞而反转的,并直接与供体细胞增殖联系起来。这些发现提高了我们目前对EF衍生自动抗体产生细胞背后基本生物电路的理解,并有可能指向未来的治疗发展途径。
p53 是一种转录因子,可调节参与肿瘤抑制的基因表达。p53 突变会介导肿瘤发生,大约 50% 的人类癌症都会发生这种突变。p53 可调节数百种靶基因,这些基因会诱导各种细胞命运,包括细胞凋亡、细胞周期停滞和 DNA 损伤修复。p53 还通过调节 TRAIL、DR5、TLR、Fas、PKR、ULBP1/2 和 CCL2;T 细胞抑制配体 PD-L1;促炎性细胞因子;免疫细胞活化状态;和抗原呈递,在抗肿瘤免疫中发挥重要作用。p53 的基因改变可通过影响免疫细胞向肿瘤的募集、TME 中的细胞因子分泌和炎症信号通路来帮助逃避免疫治疗。在某些情况下,p53 突变会增加新抗原负荷,从而改善对免疫检查点抑制的反应。治疗性恢复突变的 p53 可以恢复抗癌免疫细胞的过滤并改善促肿瘤信号以诱导肿瘤消退。事实上,有临床证据表明恢复 p53 可以在免疫冷性肿瘤中诱导抗癌免疫反应。研究 p53 恢复化合物或基于 p53 的疫苗与免疫疗法相结合的临床试验表明,抗肿瘤免疫激活和肿瘤消退在不同癌症类型中存在异质性。在本综述中,我们讨论了野生型和突变型 p53 对抗肿瘤免疫反应的影响,概述了激活 p53 以在各种癌症类型中诱导免疫反应的临床进展,并强调了限制有效临床转化的未解决的问题。
摘要 目的 揭示低疾病活动度 (LDA) 和缓解期与活动性系统性红斑狼疮 (SLE) 之间的生物学环境。方法 我们确定了 PRECISESADS 项目 (NTC02890121) 中 SLE 患者的差异表达通路 (DEP),并将患者分层为满足和不满足以下标准的患者:(1) 狼疮 LDA 状态 (LLDAS)、(2) SLE 缓解期的缓解定义和 (3) 不包括缓解期的 LLDAS。结果 我们分析了 321 名患者的数据;40.8% 处于 LLDAS,17.4% 处于 DORIS 缓解期。排除缓解期患者后,28.3% 处于 LLDAS。总体而言,LLDAS 患者和非 LLDAS 患者的 604 条通路存在显著差异,错误发现率校正后的 p (q)<0.05,稳健效应大小 (dr)≥0.36。因此,DORIS 缓解者和非缓解者之间的 288 条通路存在显著差异(q<0.05 和 dr≥0.36)。DEP 产生了不同的分子簇,其特征是血清学、肌肉骨骼和肾脏活动的差异。部分重叠样本的分析表明,LLDAS 和 DORIS 缓解之间没有 DEP。揭示了药物再利用治疗 SLE 的潜力,以及活动性 SLE 的重要途径,这些途径的调节可能有助于实现 LLDAS/缓解,包括 toll 样受体 (TLR) 级联、Bruton 酪氨酸激酶 (BTK) 活性、细胞毒性 T 淋巴细胞抗原 4 (CTLA-4) 相关抑制信号传导,以及核苷酸结合寡聚化结构域富含亮氨酸重复序列蛋白 3 (NLRP3) 炎症小体通路。结论我们首次证明了区分 LLDAS/缓解和活动性 SLE 的分子信号通路。 LLDAS/缓解与 SLE 发病机制和特定临床表现相关的生物过程逆转有关。与 LLDAS 相比,DEP 按缓解聚类更能对患者进行分组,证实缓解是 SLE 的最终治疗目标;然而,两种状态之间缺乏实质性的通路差异,从生物学角度来看 LLDAS 是一个可接受的目标。
泛素化是一种重要的蛋白质翻译后修饰(PTM),在控制底物降解过程中起着至关重要的作用,进而介导各种蛋白质的“数量”和“质量”,确保细胞稳态并保证生命活动。泛素化的调控是多方面的,不仅在转录和翻译后水平(磷酸化、乙酰化、甲基化等)起作用,而且在蛋白质水平(激活剂或抑制剂)起作用。当调控机制异常时,改变的生物学过程可能随后诱发严重的人类疾病,特别是各种类型的癌症。在肿瘤发生中,改变的生物学过程涉及肿瘤代谢、免疫肿瘤微环境(TME)、癌症干细胞(CSC)干性等。在肿瘤代谢方面,一些关键蛋白如RagA、mTOR、PTEN、AKT、c-Myc和P53的泛素化显著调节mTORC1、AMPK和PTEN-AKT信号通路的活性。此外,TLR、RLR和STING依赖性信号通路的泛素化也调节TME。此外,核心干细胞调节三联体(Nanog、Oct4和Sox2)以及Wnt和Hippo-YAP信号通路成员的泛素化参与维持CSC的干性。基于改变的组分,包括蛋白酶体、E3连接酶、E1、E2和去泛素化酶(DUB),许多分子靶向药物已被开发用于对抗癌症。其中,针对蛋白酶体的小分子抑制剂如硼替佐米、卡菲佐米、奥普佐米和伊沙佐米等均取得了显著的成功。此外,针对E1酶的MLN7243和MLN4924,针对E2酶的Leucettamol A和CC0651,针对E3酶的nutlin和MI‐219,以及针对DUB活性的化合物G5和F6也在临床前癌症治疗中展现出潜力。本综述总结了泛素化底物的最新进展及其在肿瘤代谢调控、TME调控和CSC干性维持方面的特殊功能,并综述了癌症的潜在治疗靶点以及靶向药物的治疗效果。
败血症和严重的急性呼吸综合症冠状病毒2(SARS-COV-2)感染及其严重的冠状病毒疾病2019(Covid-19),代表了现代时代的主要医疗挑战。治疗选择是有限的,主要是症状的,部分依赖于抗体和皮质类固醇,而对于SARS-COV-2感染,抗病毒药物remdesivir补充,最近由Molnupivavir,Nirmatrelvir/Ritonavir/Ritonavir/Ritonavir/Ritonavir,Janus kinib和Janus kinib andib andib andib andib andib andibin。败血症和严重的SARS-COV-2感染/COVID-19在病理生理学和促炎性介体的水平上具有许多特征,从而实现了共同的疾病管理策略。成功针对败血症和严重的SARS-COV-2感染/ COVID-19的预后严重程度和死亡率标志物3(PTX3)的新想法;补体(C3/C3A/C3AR和C5/C5A/C5AR轴);肿瘤坏死因子(TNF)-α,白介素(IL)-1β和IL-6表达; IL-6触发的C5AR受体在血管内皮细胞中的表达;抗炎IL-10的释放仍然缺失。具有溶酶体特征的小分子,例如批准的阿米替林药物,德斯洛拉塔丁,氟氟氧胺,阿塞拉斯汀和ambroxol,已证明了它们在COVID-19的啮齿动物模型或临床试验中的临床益处。但是,它们的确切作用方式仍有待完全阐明。合理的药物重新利用批准的药物或筛查具有实际上溶酶体药理学作用的活性化合物是改善预防和治疗败血症和/或SARS-COV-2感染的主要机会,以及其严重的形式的COVID-19。针对与疾病相关的靶标,例如宿主细胞的病毒感染,脱落类似受体的受体(TLR),促炎性介质的表达,例如TNF-α,IL-1β,IL-1β,IL-6,PTX3,以及补充受体C5AR,强调了与当前的跨性别方法相比的优势。