摘要:靶向放射性核素治疗 (TRT) 的概念是准确有效地将辐射传送到播散性癌症病变,同时最大限度地减少对健康组织和器官的损害。成功开发用于 TRT 的新型放射性药物的关键方面是:i) 识别和表征癌细胞上表达的合适靶点;ii) 选择对癌细胞相关靶点表现出高亲和力和选择性的化学或生物分子;iii) 选择衰变特性与靶向分子特性和临床目的相符的放射性核素。瑞士保罗谢勒研究所的放射性药物科学中心 (CRS) 享有优越的地理位置,靠近独特的放射性核素生产基础设施(高能加速器和中子源),并可使用 C/B 型实验室,包括临床前、核成像设备和瑞士医药认证实验室,用于制备供人类使用的药物样品。这些有利条件允许生产非标准放射性核素,探索其生化和药理学特征以及对肿瘤治疗和诊断的影响,同时研究和表征新的靶向结构并优化这些方面以进行放射性药物的转化研究。通过与瑞士各临床合作伙伴的密切合作,最有前途的候选药物被转化为临床用于“首次人体”研究。本文通过介绍一些选定的项目,概述了 CRS 在 TRT 领域的研究活动。
肺癌是全球癌症死亡的主要原因,传统化疗对晚期非小细胞肺癌 (NSCLC) 的疗效有限。近年来,由于包括靶向治疗在内的新治疗方式的发展,NSCLC 患者的预后已显著改善。靶向治疗利用针对特定突变基因(例如 EGFR 和 ALK)的单克隆抗体 (mAb)、抗体-药物偶联物 (ADC) 或小分子酪氨酸激酶抑制剂 (TKI)。这些药物的开发加深了我们对 NSCLC 的了解并改善了患者的治疗效果。本综述旨在总结 NSCLC 靶向治疗的机制和现状,讨论克服获得性耐药的策略,并应对该领域当前面临的挑战。
定量方法评估旨在衡量在干预项目中参与的三个目标群体的项目成果:年轻人,老师和大使。使用前和后调查的方法来评估参与对年轻人及其老师的影响。t检验用于测试所有结果前和后分数之间的统计差异。使用项目后调查测量了大使结果。附录中包括调查问题以及响应前和后响应后的细分。每种干预措施完成后的定性方法,组织提供了定性反馈和反思,总结了其项目及其成果。评估团队主题分析了这些定性领域,以确定主要项目主题,活动类型,年轻人的项目成果以及所学的挑战和经验教训。
靶向蛋白质的降解是一种新兴而有希望的治疗方法。降解的特异性和细胞稳态的维持是由E3泛素连接酶和脱脂信号(称为Degrons)之间的相互作用确定的。人类基因组编码超过600个E3连接酶;但是,到目前为止,仅确定了少数目标的DEGRON实例。在这项研究中,我们引入了DeGronmd,这是一个开放知识库,旨在研究DEGRON,它们相关的功能障碍事件和药物反应。我们驱逐出来,degrons在进化上是保守的,并且倾向于在蛋白质翻译修饰部位附近发生,尤其是在无序结构和较高溶剂可访问性的区域。通过模式识别和机器学习技术,我们构建了跨人类蛋白质组的降解景观,产生了超过18,000个新的脱脂剂,用于靶向蛋白质降解。此外,DEGRON的功能障碍会破坏降解过程,并导致蛋白质的异常积累。此过程与各种类型的人类癌症有关。基于由体细胞突变引起的估计表型变化,我们从系统地进行了量化并评估突变对pan-Canters degron功能的影响;这些结果有助于建立有关人类降解的全球突变图,其中包括89,318个可起作用的突变,这些突变可能引起降解和破坏蛋白质降解途径的功能障碍。多组合综合分析揭示了与功能性脱粒突变相关的400多个耐药性事件。degronmd,可在https://bioinfo.uth.edu/degronmd上访问,是探索生物学机制,推断蛋白质降解以及在Degron上的药物发现和设计的有用资源。
脑肿瘤是一组异质的肿瘤群,最常见的是神经胶质瘤,其行为范围不同,与对最恶性的,胶质母细胞瘤的多形性相对良好。由于其在中枢神经系统中的微环境引起的,并且由于存在血脑屏障,血脑脊髓液屏障和血液 - 肿瘤屏障,因此与全身循环中很好地分离了脑肿瘤。因此,全身治疗主要是没有成功的。但是,脑肿瘤不再具有与几年前相同的预后。手术的改善可以与这种观点以及其他创新疗法以及手术结合使用。有针对性疗法的可能性(避免正常的组织和破坏肿瘤细胞)正在改变神经肿瘤学的领域,对不久的将来对恶性脑肿瘤的治疗产生了重大影响。本期特刊旨在关注神经肿瘤学,靶向和免疫疗法,临床研究特定开放临床试验和构成评论的新颖方面。
疫苗可以预防疾病的症状,但不能阻止细菌的扩散(6,7)。现在,研究人员之间已经达成共识,即AP疫苗赋予对疾病的良好但短暂的保护性免疫,但防止对集合,脱落和传播的保护却少得多(6,7)。我们对百日咳芽孢杆菌的大部分知识是从肺炎感染的动物模型中学到的,这些模型是在科赫假设指导的时代开发的(8-19)。这些动物实验系统的设计旨在引起严重的病理和近乎致命的毒力,以模拟最严重的人类疾病。在这种方法中出现的百日咳模型中,在动物的呼吸道深处引入了大量病原体,类似于其严重和毒力中的极端人类感染,但肺部受累的涉及比通常在临床上观察到的更多。在这些模型中,高剂量的百日咳(通常为10 5 –10 6 CFU)被输送到啮齿动物的肺(20,21)。较大的物品,例如狒狒,被赋予更大数量的内核插管接种,10 8 –10 10
1都灵大学临床与生物科学系Corso Raffaello 30,10125意大利都灵,都灵; marieangele.cucci@unito.it(m.a.c.); margherita.grattarola@unito.it(M.G。); giuseppina.barrera@unito.it(g.b。)2,都灵大学的Scienza E Tecnologia del Farmaco,通过意大利都灵的Pietro Giuria 9,10125; chiara.monge@unito.it(c.m.); chiara.dianzani@unito.it(c.d.)3临床和生物科学系 - 都灵大学山扎加医院山luigi Gonzaga医院,冈佐尔地区10,10043 Orbassano,意大利都灵; antonella.roetto@unito.it 4遗传学与生物物理学研究所-IGB-CNR,“ A。Buzzati-Traverso”,通过Pietro Castellino 111,80131 Naples,意大利; emilia.caputo@igb.cnr.it *通信:stefania.pizzimenti@unito.it†这些作者对这项工作做出了同样的贡献。‡当前地址:图灵生活系统中心,马赛发展生物学研究所(IBDM),CNRS,AIX-MARSELILLE大学,PARC Scientie de Luminy,13288,法国马赛。
简单摘要:原发性中枢神经系统淋巴瘤是一种罕见的疾病,其治疗方法有限。对这种疾病构成的分子机制的更深刻理解促进了新型治疗方法的发展。在小分子抑制剂的领域进行了原发性中枢神经系统淋巴瘤的关键发展,即旨在特定靶向癌症分子主链的药物。突出的例子包括Bruton的酪氨酸激酶或雷帕霉素的哺乳动物靶标的抑制剂,以及免疫调节性甲乙酰胺类似物。沿相同的线,原发性中枢神经系统淋巴瘤的另一种主要药物发育菌株包括免疫检查点抑制剂,即旨在释放抗癌免疫反应的单克隆抗体。这篇文章讨论了这些持续的临床发展,包括生物学原理以及初步的毒性和效率,并为未来的发展提供了前景。
淋巴瘤是全球第六种最常见的癌症类型。在当前治疗标准下,淋巴瘤患者通常无法对治疗或复发作出反应,需要进一步治疗。因此,需要探索新颖的治疗策略,我们应该扩展我们对淋巴瘤分子基础的理解。铁凋亡是一种非凋亡调节的细胞死亡,其特征是活性氧和由于代谢功能障碍而引起的脂质过氧化。过多或缺乏铁氧作用已与肿瘤发育有关。当前的临床前证据表明,铁铁病参与淋巴瘤的肿瘤发生,进展和耐药性,鉴定出潜在的生物标志物和有吸引力的分子靶标。我们的审查总结了铁凋亡的核心机制和调节网络,并讨论了淋巴瘤治疗的铁凋亡诱导的现有证据,目的是提供一个框架,以理解铁凋亡在淋巴细胞内的作用以及对淋巴瘤治疗的新观点。