葡萄糖是哺乳动物细胞的关键代谢底物。血糖是糖原和脂肪生物合成以及各种含糖的大分子的前体,例如糖蛋白,糖脂和核酸。一些组织(例如大脑)需要葡萄糖作为能源和其他组织(例如肌肉)优先将葡萄糖分解为ATP的产生。血糖代谢的第一步是跨质膜的转运。此步骤是由称为葡萄糖转运蛋白的一系列膜载体蛋白(1,2)进行的。令人惊讶的是,不同的蛋白质家族负责葡萄糖在极化肠和肾上皮细胞的顶端膜中转移。这些钠 - 葡萄糖共转运蛋白是次要激活。:似乎与促进性葡萄糖转运蛋白无关的转移系统。由于葡萄糖在细胞代谢中所起的核心作用,几乎所有哺乳动物细胞中都存在一个或多个葡萄糖转运蛋白。在大多数细胞类型中,葡萄糖转运蛋白仅参与血糖的净摄取以用于细胞代谢。然而,在某些组织中,葡萄糖转运蛋白可能会参与细胞葡萄糖的净外排。例如,此过程发生在葡萄糖跨肠道或肾上皮的吸收或重吸收期间,在basolat-eary1膜中存在可容纳的葡萄糖转运蛋白,并使糖的被动通量降低其浓度梯度进入血液中。此外,在禁食过程中,转运蛋白参与了肝脏或肾脏细胞的细胞葡萄糖的净出口。葡萄糖转运蛋白参与了升高和降低血糖水平,因此非常适合参与葡萄糖稳态的调节。本综述将重点介绍有关几种关键哺乳动物组织中葡萄糖转运蛋白的最新进展。首先,我们简要描述了葡萄糖转运蛋白亚型的某些物理特性。
摘要 溶质载体 (SLC) 膜转运蛋白包含一个易于处理但尚未得到充分研究的靶标家族,可用于潜在的药物干预。最近对人类遗传与疾病的关联分析,结合诸如寻找合成致死性等介入方法,揭示了各种 SLC 家族成员与未满足治疗需求的疾病之间的新联系。荧光成像板读取器 (FLIPRTM,Molecular Devices) 与响应细胞膜电位 (MP) 的荧光染料相结合,为进行 SLC 指导的药物发现提供了一个多功能平台。这是因为许多 SLC 运输带电溶质或溶质与离子结合,因此易位与 MP 的变化有关。我们展示了两次完整的高通量筛选 (HTS) 活动的结果,以说明该平台的应用。SLC 通过杆状病毒介导的转导在粘附的 U2OS 宿主细胞中表达。将染料加载到 1536 孔高密度微量滴定板中的细胞,与测试药物预孵育,并用底物(氨基酸或糖)进行攻击。通过与对未转化宿主细胞的 KCl 诱发的 MP 反应的影响进行比较,筛选出具有非 SLC 特异性作用的药物。从大约 200 万种化合物的完整筛选集合中,对 500-2000 种推定的抑制剂进行了研究,以确定对密切相关转运蛋白的特异性(也使用 FLIPR),并通过非 FLIPR 方法证实真实的 SLC 抑制(即“正交性”)。HTS 活动在有吸引力的化学空间中提供了新的化学起点,从而能够探索结构-活性关系 (SAR),并有助于在动物模型中确认每种情况下的治疗假设:药物介导的 SLC 抑制将诱导对疾病有益的生理效应。
摘要:(1) 背景:口服靶向抗癌药物容易受到系统前药代动力学药物相互作用 (DDI) 的影响。由于大多数此类药物是肠道和/或肝脏细胞色素 P-450 酶和肠道膜转运蛋白的底物,因此很难确定这些 DDI 的性质(即基于酶还是基于转运蛋白)。(2) 方法:DDI 和对照期(MAT 比率 < 0.77 或 >1.30)之间的平均吸收时间 (MAT) 差异已被提出,以暗示肠道水平的 DDI 中存在转运蛋白。该方法已应用于大量口服靶向抗癌药物(n = 54,涉及 77 项 DDI 研究),这些药物来自国际文献和/或可公开访问的 FDA 文件中的 DDI 研究。 (3) 结果:33 项 DDI 研究表明 MAT 存在显著变化,其中 12 项可通过调节流出转运蛋白来解释。在 21 项 DDI 研究中,调节流出转运蛋白无法解释 MAT 变化,这表明流入转运蛋白可能在肠道吸收中发挥相关作用。 (4) 结论:该方法可以提示肠道转运蛋白参与 DDI,应与体外方法结合使用,以帮助了解 DDI 的起源。
摘要:与相应的健康细胞相比,癌细胞中的膜转运蛋白表达通常会发生改变。这些蛋白质分为溶质载体 (SLC) 和 ATP 结合盒 (ABC),它们不仅可以携带内源性化合物、营养物质和代谢物,还可以携带药物穿过细胞膜,因此它们在药物暴露和化疗药物的临床结果中起着至关重要的作用。奇怪的是,SLC 的上调可用于递送化疗药物、其前体药物和诊断放射性示踪剂,以实现癌细胞选择性靶向,例如 L 型氨基酸转运蛋白 1 (LAT1)。还可以抑制 SLC 以限制癌细胞的营养吸收,从而限制细胞生长和增殖。此外,LAT1 可用于选择性地将 ABC 抑制剂递送到癌细胞中,以阻止其他化疗药物的流出,这些化疗药物患有获得性或内在性流出转运相关的多药耐药性 (MDR)。考虑到目前的文献,能够以癌细胞选择性方式影响转运蛋白上调或下调的化合物可能是一种有价值的工具,并且是未来有前途的化疗形式。
如上所述,很明显药物的吸收和与分子细胞系统的相互作用是复杂的现象,并且受到特定膜转运蛋白的功能或功能障碍的强烈影响[8–10]。因此,药物-转运蛋白相互作用预计在人类治疗中发挥关键作用[11,12],或者在其他情况下,由于所谓的脱靶相互作用而引发副作用[13]。经过几十年的研究,现在人们普遍认为,在药物设计中必须考虑膜转运蛋白,以改善药物输送和疗效。在这方面,国际转运蛋白联盟[14]成立,旨在确定:(i)必须考虑哪些转运蛋白来改善药物吸收;(ii)用于测定和筛选药物-转运蛋白相互作用的合适生物技术;(iii)需要考虑脱靶效应的转运蛋白[15,16]。实验室自动化与筛选协会 (SLAS, https://www.slas.org ) 也开始考虑膜转运蛋白在药物发现中的应用 [17]。研究转运蛋白的最新方法进步引发了对膜转运蛋白和药物-转运蛋白相互作用的研究呈指数级增长 [18–20]。在这种情况下,人们对一组特殊的膜转运蛋白产生了浓厚的兴趣:谷氨酰胺转运蛋白。人们对这组蛋白质的兴趣日益浓厚的原因有很多,从基础知识的提高到谷氨酰胺转运参与细胞生命的关键过程及其在人类病理学中的作用。最后一个方面为利用这些蛋白质作为人类治疗的新靶点开辟了新的、非常有希望的前景。在这篇评论中,将总结这一迅速发展的领域的现状。
摘要:离子通道和转运蛋白通常由在各种生理和病理过程中发挥关键作用的生物分子组成。传统疗法包括许多离子通道阻滞剂和一些激活剂,尽管调节离子稳态的确切生化途径和机制尚未完全阐明。生物医学中一个具有巨大创新潜力的新兴研究领域涉及合成离子通道和转运蛋白的设计和开发,这可能提供未开发的治疗机会。然而,在这个具有挑战性和多学科的领域中的大多数研究仍然处于基础水平。在这篇综述中,我们讨论了过去五年在离子通道和转运蛋白方面取得的进展,涉及与生物用途相关的生物分子和合成超分子。我们最后确定了未来探索的治疗机会。
尽管过去十年取得了许多科学和技术进步,但抗癌药物的新药研发的流失率仍然高达 95%。最近的药物开发部分遵循利宾斯基 5 规则 (Ro5),尽管许多获批药物并不符合这些规则。随着 Covid-19 疫苗开发策略大大加速药物开发,或许现在是时候质疑仿制药开发流程本身,以找到更高效、更具成本效益和更成功的方法。人们普遍认为药物通过两种方式渗透细胞:磷脂双层扩散和载体介导的转运蛋白。然而,新出现的证据表明,载体介导的转运可能是药物吸收的主要机制,而不是长期以来认为的扩散。计算生物学越来越多地协助药物设计实现理想的吸收、分布、代谢、消除和毒性 (ADMET) 特性。完善药物进入靶细胞作为细胞内药物作用的先决条件是一种合理且令人信服的途径,有望降低药物损耗率,尤其受到慢性终身治疗的青睐。新药开发正在迅速从利用超五规则 (bRo5) 扩展到脉冲药物输送系统和基于片段的药物设计。利用转运蛋白作为药物靶标并提倡 bRo5 分子可能是提高药物特异性、减少剂量和毒性并从而彻底改变药物开发的解决方案。本综述探讨了细胞表面转运蛋白在药物开发中的开发以及与改善治疗指数的关系。
表示所选为在行星A上的1 x与位于行星接地上的设备J e内的坐标V之间的差异。所需要的只是知道行星A(等式(14))上的欲望位置,而无需行进两个行星之间的距离D。为了在确切的统一体/对象中重建f(x)作为起点,f(x)上的f(x)坐标的拓扑结构必须与地球的起源相同,否则,重建将是不合理的,因为F(x)可以在Planet A.似乎很奇怪,不切实际的情况是,频率调节的结果与位于地球的设备j e内部的物体F(x)的结果可能导致地球上数百光年的planet A上的物体F(x)的出现。想象物体是人类。主要问题之一 - 行星a上对象f(x)的外观表示对象的副本或对象从转运器设备j e中消失,并在行星A上重新出现。对我们的最佳看法,在设备J E中的内部球形点上执行傅立叶积分,将对象转换为新的空间,即频率空间。对象在设备j e中停止。现在将对象编码为频率波模式。逆傅立叶在宽度或放置对象的频率空间上转换将重建对象。但是现在,我们可以在不同位置重建对象,因为频率空间不取决于空间位置,距离,速度,时间,我们可以随意地重建对象。
三磷酸腺苷 (ATP) 结合盒 (ABC) 转运蛋白是一个由 48 个成员组成的膜蛋白超家族,可主动将多种生物底物转运过脂质膜。它们功能的多样性决定了它们在人类生物学无数方面的广泛参与。至少有 21 种 ABC 转运蛋白是罕见单基因疾病的病因,还有更多的转运蛋白与常见和复杂疾病的易感性和症状有关。如此广泛的 (病理) 生理相关性使这类蛋白质处于疾病病因和治疗潜力的交叉点,强调它们成为药物发现的有希望的靶点,例如用于治疗囊性纤维化的变革性 CFTR (ABCC7) 调节剂疗法。本综述将探讨 ABC 转运蛋白与人类疾病日益增长的相关性及其作为小分子药物靶点的潜力。
摘要ATP结合盒(ABC)转运蛋白P-糖蛋白(P-GP)和ABCG2是多药转运蛋白,可在细胞培养中赋予对众多抗癌疗法的耐药性。这些发现最初在医学肿瘤学界引起了极大的兴奋,因为这些转运蛋白的抑制剂有望克服癌症患者的临床多药耐药性。然而,与癌症化学治疗剂结合使用的P-gp和ABCG2抑制剂的临床试验并未成功,部分原因是由于对癌症检查的多剂量耐药性(MDR)的多因素基础的分子理解而导致的临床试验有缺陷。在基于理性结构的抑制剂药物设计中缺乏高分辨率的结构信息,因此该领域也受到了阻碍。结构生物学的最新进展导致了ABCG2和P-gp的多种结构,这些结构更清楚地阐明了运输机理以及其底物和抑制剂结合位点的多性性特异性。这些数据应该证明对开发两个转运蛋白的更有效和特定的抑制剂有用。因此,尽管需要评估可能的药代动力学相互作用,但是这些抑制剂可能会在克服癌症群体中的化学疗法中克服ABC依赖性多药耐药性方面具有更大的有效性。可能对这些抑制剂的另一种更具说服力的使用可能是可逆地抑制