血管生成是癌症生物学的一个标志,针对肿瘤血管或 VEGF 信号的新辅助疗法已被开发用于治疗实体恶性肿瘤。然而,这些疗法会诱导血管完全耗竭,导致缺氧微环境、耐药性和肿瘤复发率,或导致化疗药物输送受损和肿瘤部位免疫细胞滤过。实现氧合和肿瘤生长抑制之间的平衡需要在用低剂量抗血管生成剂治疗后确定血管正常化。然而,已获批准的抗血管生成剂中的单一疗法仅对某些肿瘤有益,可以使用免疫疗法和新兴纳米载体作为临床工具来优化后续治疗方案并减少对高剂量化疗剂的需求,从而提高其疗效。更重要的是,联合免疫疗法和基于纳米的输送系统可以延长正常化窗口,同时提供优势以应对抗血管生成剂中当前的治疗挑战。本综述总结了针对肿瘤血管生成已获批准的治疗方法,强调了当前治疗方法的挑战和局限性,并讨论了血管正常化、免疫疗法和纳米医学如何引入治疗诊断潜力以改善未来临床环境中的肿瘤管理。
据报道,卵巢癌 (OC) 是全球第三大常见妇科恶性肿瘤,也是最致命的癌症类型 (1)。2020 年共报告了 313,959 例新诊断病例和 207,252 例相关死亡病例 (2)。由于 OC 细胞 (OCC) 通常表现为无症状,因此 75% 以上的病例是在晚期才被诊断出来的,通常是在肿瘤扩散到整个腹部之后 (3)。目前,OC 的标准治疗包括最大限度的细胞减灭术,然后进行铂类化疗 (4)。虽然大多数患者在常规化疗后进入临床缓解期,但复发率高达 85% (5)。此外,全球许多国家的 OC 总体 5 年生存率均低于 50% (6)。几乎 90% 的卵巢肿瘤属于上皮性卵巢癌 (EOC) 类型,该类型分为五种组织学亚型:浆液性肿瘤(约占 EOC 的 80%)、粘液性肿瘤、子宫内膜样癌、卵巢透明细胞癌和混合性肿瘤 (7)。然而,复发病例通常具有化疗耐药性,
a 浙江省人民医院泌尿外科、杭州医学院附属人民医院泌尿肾病中心,浙江杭州 310014 b 西安交通大学肿瘤研究室、环境与疾病相关基因教育部重点实验室,陕西西安 710049 c 浙江省人民医院康复医学中心、神经电生理研究室,杭州医学院附属人民医院,浙江杭州 310014 d 浙江省人民医院肿瘤中心、超声医学科,杭州医学院附属人民医院,浙江杭州 310014 e 浙江大学化工与生物工程学院生物纳米工程研究中心、生物质化工教育部重点实验室,浙江杭州 310014 f 应用生物与化学系香港理工大学科技系,香港,中国
巨噬细胞是肿瘤微环境中最丰富的非恶性细胞之一,在介导肿瘤免疫中起着关键作用。作为重要的先天免疫细胞,巨噬细胞具有吞噬肿瘤细胞和呈递肿瘤特异性抗原以诱导适应性抗肿瘤免疫的潜力,这导致人们对以巨噬细胞吞噬作用为目标的癌症免疫治疗的兴趣日益浓厚。然而,活肿瘤细胞已经进化到通过大量表达抗吞噬分子(如 CD47)来逃避巨噬细胞的吞噬作用。此外,巨噬细胞还能快速识别和吞噬肿瘤微环境中的凋亡细胞(胞吞作用),从而抑制炎症反应并促进肿瘤细胞的免疫逃逸。因此,通过阻断活肿瘤细胞上的抗吞噬信号或抑制肿瘤胞吞作用来干预巨噬细胞吞噬作用为癌症免疫疗法的开发提供了一种有希望的策略。本文首先总结了巨噬细胞介导的肿瘤细胞吞噬作用的调节,然后概述了针对巨噬细胞吞噬作用的抗肿瘤疗法开发策略。鉴于传统疗法(例如单克隆抗体、小分子抑制剂)给药可能产生的脱靶效应,我们强调了纳米医学在巨噬细胞吞噬作用干预方面的机会。
引言肿瘤也称为肿瘤或病变是异常的组织,通过不受控制的细胞分裂生长。随着新细胞替代旧细胞或受损的细胞,正常细胞以受控的方式生长。由于未完全理解的原因,肿瘤细胞会无法控制地再现。脑肿瘤是颅内包含的任何组织中发生的异常生长,包括大脑,颅神经,脑膜,头骨,垂体和松果体。脑肿瘤以其生长的细胞类型命名。它们可能是主要的(从大脑开始)或次级(从其他区域扩散到大脑)。处理选项因肿瘤类型,大小和位置而异。肿瘤是否已扩散;以及该人的年龄和医疗服务的健康状况。治疗选择可以治愈或专注于缓解症状。超过120种类型的脑肿瘤,许多人都可以成功治疗许多人的寿命和生活质量。
筛查,早期诊断和治疗方面的进步对总体癌症致命率3的下降有重大影响。然而,在改善癌症患者4的结果方面,对治疗的耐药性仍然是最大的挑战。在1942年由耶鲁大学药物老兄会和医生5 - 7的多学科团队做出多种药物后,可以发展出癌症对化学疗法的概念证明,他们对患者进行静脉内的氮芥末术治疗淋巴瘤8。这项临床试验揭示了所谓的获得的耐药性。进一步的研究表明,只有一些癌症对治疗作出反应,从而揭示了内在的抗药性。大约35年后,Ling及其同事证明了一种被指定为透化性糖蛋白的细胞表面糖蛋白的作用,在中国仓鼠卵巢细胞对秋水仙碱9、10中的耐药性。作者表明,这些细胞还耐有结构和机械无关的药物,该药物被定义为多药耐药9、10。克隆了编码该渗透性 - 糖蛋白11的ABCB1基因11。这是膜蛋白的大型超家族的第一个成员,其中包括48个MEM啤酒分为7个家庭,称为ATP结合盒(ABC)转运蛋白12。自ABCB1以来,许多其他ABC运输ER与耐药性13有关。这些抑制剂的毒性仍然是一个主要问题,其中包括在某些第13-15条中解决的问题。不幸的是,大多数临床试验未能支持这些药物外排转运蛋白作为克服ABC转运蛋白介导的耐药性14的治疗策略。癌症对化学疗法反应的表征已导致鉴定出许多其他耐药性机制,这是由于摄取转运蛋白的表达降低,表观遗传改变,药物隔离和增强的DNA损伤修复4。
aron Cohen-Gadol 医学博士、理科硕士是南加州大学凯克医学院神经外科系教授兼创新副主席。Cohen 博士擅长治疗复杂的脑和脊柱肿瘤以及动静脉和海绵状畸形、面肌痉挛和三叉神经痛。Cohen 博士在南加州大学凯克医学院获得医学学位,并在明尼苏达州罗彻斯特的梅奥诊所完成住院医师实习。他还完成了两个亚专业的进修培训,即癫痫外科(耶鲁大学)和颅底/脑血管外科(阿肯色大学)。Cohen 博士拥有梅奥研究生院临床研究硕士学位和凯利商学院工商管理硕士学位。2006 年,Cohen 博士加入印第安纳大学医学院神经外科系,担任神经外科教授和神经外科肿瘤学/脑肿瘤外科主任。
线粒体调节在肿瘤微环境 (TME) 中的癌症免疫中起着至关重要的作用。在过滤过程中,免疫细胞(包括 T 细胞、自然杀伤 (NK) 细胞和巨噬细胞)会经历线粒体代谢重编程,以在 TME 的恶劣条件下生存并增强其抗肿瘤活性。另一方面,免疫抑制细胞(如髓系抑制细胞 (MDSC)、调节性 T 细胞 (Treg)、肥大细胞和肿瘤相关巨噬细胞 (TAM))也依赖线粒体调节来维持其功能。此外,癌细胞的线粒体调节有助于免疫逃避,甚至劫持免疫细胞的线粒体以增强其功能。最近的研究表明,针对线粒体可以协同减缓癌症进展,尤其是与传统癌症疗法和免疫检查点抑制剂相结合时。目前,许多针对线粒体的药物正在临床试验中,并有可能增强免疫疗法的疗效。这篇小型综述强调了线粒体调节在癌症免疫中的关键作用,并列出了有可能增强癌症免疫疗法疗效的针对线粒体的药物。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
SNP微阵列分析是使用Affymetrix Oncoscan(TM)FFPE测定试剂盒进行的,其唯一目的是识别DNA拷贝数的收益和损失以及杂合性丧失的区域。该测定法利用了分子反转探针(MIP)技术,该技术已针对高度降级的FFPE样品(仅40个碱基对的探针询问位点)进行了优化。对于拷贝数,该测定法在选定的900个癌症基因中的分辨率为50-100 kb,在癌症基因之外的300 kb分辨率。镶嵌的检测阈值是可变的,具体取决于段的大小。CNV。收益和损失包括已知的临床意义癌症基因,或者在临床肿瘤学之外的3MB重要区域大于3MB,杂合性的丧失大于10MB。分析基于GRCH37组件。