摘要:印刷电路板 (PCB) 是重要的模块,被广泛地应用于工业设备和机械,用于控制或信号处理。处于动态环境中的 PCB 可能容易因谐波或随机振动源产生的过多周期性应力而发生故障。因此,对 PCB 及其相关组件的动态行为进行数值建模和预测的能力对于关注 PCB 可靠性的分析师来说是一种有价值的工具。本文使用实验振动分析和有限元法 (FEM) 研究 PCB 谐振行为随电子元件的质量、位置和刚度变化而发生的变化。考虑了稀疏或密集地布满电阻器、晶体管、电容器和集成电路等无处不在的焊接电子元件的电路板。分析表明,对于元件数量较少的电路板,其固有频率与裸 PCB 相比会降低,而焊接元件数量较多的电路板则相应增加。研究表明,焊料的总体效果是降低 PCB 的固有频率,并在较小程度上降低阻尼比。该研究确定了通过适当选择和定位连接元件来调整 PCB 振动响应的潜力。
基于十多年的无线体验,艾默生的新AMS无线振动监视器是当今可用的最先进的设备。它通过自组织的无线网络网络提供完整的振动数据。它为操作和维护人员提供了有关机械健康的丰富信息。总体振动,PeakVue™测量值和温度读数可以轻松地集成到任何控制系统或植物史学家中,而诊断数据可以由AMS设备管理器和AMS Machine Works Works软件显示,并通过AMS Optics Asset资产性能平台广播。对于高级诊断,可以将高分辨率数据传递到AMS机器工程软件以进行详细分析。
2.1.2 模态分析假设模态分析源于结构动力学理论,该理论提供了获取振型和参数的条件和要求。以下一组假设是模态分析的基本假设 [7]:• 系统是线性的• 系统是时不变的• 系统是可观测的如果系统是线性的,则结构对任何输入力组合的响应等于每个单独输入力的响应之和。为了使系统具有时不变性,模态参数(固有频率、阻尼和振型)必须与时间无关或为常数。如果系统是可观测的,则输入和输出测量值包含足够的信息来准确表征系统的行为 [8]。由于非线性行为,具有松散部件的结构不是完全可观测的。如果这些假设对结构成立,则 GVT 将产生线性结构动力学理论预测的结果,并且可以找到模态参数和振型。
振动技术简介 Dennis H. Shreve 市场总监 IRD Mechanalysis, Inc. 哥伦布,俄亥俄州 43229 1994 年 11 月 背景 某种机器几乎用于我们日常生活的每个方面;从我们在家中使用的吸尘器和洗衣机,到用于制造我们日常使用的几乎所有产品的工业机械。当机器发生故障或损坏时,后果可能包括烦恼、经济灾难、人身伤害甚至生命损失。因此,及早发现、识别和纠正机械问题对任何参与工业机械维护的人来说都是至关重要的,以确保持续、安全和高效的运行。本文向您介绍了机械振动的使用和多年来开发的技术进步,使人们不仅可以检测到机器何时出现问题,还可以识别问题的具体性质以安排纠正。振动作为机械状况的指标 您曾多少次触摸过机器以查看它是否“运转正常”?凭借经验,您已经形成了对机械振动的正常和异常的“感觉”。即使是最没有经验的驾驶员也知道方向盘振动或发动机摇晃时一定出了问题。换句话说,将机器的状况与其振动水平联系起来是很自然的。当然,机器振动是正常的。即使是运行状况最好的机器也会因为一些小的、轻微的缺陷而产生一些振动。因此,每台机器都会有一定程度的振动,这些振动可能被视为正常或固有的。但是,当机械振动增加或变得过度时,通常是由于某些机械故障造成的。振动不会无缘无故地增加或变得过度。导致振动的原因有多种 - 不平衡、错位、齿轮或轴承磨损、松动等。由于并非每个人都拥有根据感觉判断机器状况所需的长期经验,因此多年来已经开发了各种仪器来测量实际的振动水平或振动量。此外,人类对触觉和感觉的感知有些有限,并且有许多常见问题(例如轴承和齿轮故障的早期阶段)通常超出了人类感知的范围。因此,用于测量旋转和往复机械振动的现代仪器不仅可以最大限度地减少对丰富经验的需求,而且可以检测到超出人类触觉和听觉范围的正在发展的问题。此外,人类的感知因人而异。一个人可能认为不好的事情,另一个人可能认为是正常的。试图用人类的感知来预测机械状况的变化趋势几乎是不可能的,因为几乎不可能用一个记录的数字来描述“感觉如何”。为了解决这个问题,人们开发了仪器来实际测量机器的振动水平并为其分配一个数值。这种工具不仅克服了缺乏经验的局限性,而且还解决了人类感知的局限性。
4. 对于高优先级、长寿命、复杂的太空设备,高可靠性通常是通过严格遵守历史上成功完成任务的要求和良好做法来实现的。这类太空设备的计划通常经过精心设计,提供广泛的制衡机制,由独立人员对每个步骤进行详细审查,以确保不会遗漏任何问题。在设计中,特别注意尽可能消除单点故障模式。对任何剩余的单点故障项目实施特殊设计分析、制造过程中的特殊筛选和其他可确保可靠性的质量规定,以避免潜在缺陷。对于这些计划,从单元、子系统、太空实验到所涉及的每个航天器,每个组装级别都进行了全面的鉴定计划。
2.1.2 模态分析假设 模态分析源于结构动力学理论,该理论提供了获得模态形状和参数的条件和要求。以下一组假设是模态分析的基本假设 [7]: • 系统是线性的 • 系统是时不变的 • 系统是可观测的 如果系统是线性的,则结构对任何输入力组合的响应等于每个单独输入力的响应之和。为了使系统具有时不变性,模态参数(固有频率、阻尼和模态形状)必须与时间无关或为常数。如果系统是可观测的,则输入和输出测量包含足够的信息来准确表征系统的行为 [8]。由于非线性行为,具有松散组件的结构无法完全观测。如果这些假设对结构有效,则 GVT 将产生线性结构动力学理论预测的结果,并且可以找到模态参数和模态形状。
齿轮噪声与振动——文献综述 Mats Åkerblom mats.akerblom@volvo.com Volvo Construction Equipment Components AB SE–631 85 瑞典埃斯基尔斯蒂纳 摘要 本文是对齿轮噪声与振动文献的综述。 它分为三个部分:“传动误差”、“动态模型”和“噪声与振动测量”。 传动误差 (TE) 被认为是齿轮噪声和振动的重要激励机制。 传动误差的定义是“输出齿轮的实际位置与齿轮传动完全共轭时其所处位置之间的差”。 由齿轮、轴、轴承和变速箱壳体组成的系统的动态模型对于理解和预测变速箱的动态行为很有用。 在通过实验研究齿轮噪声时,噪声和振动测量以及信号分析是重要的工具,因为齿轮会在特定频率下产生噪声,这与齿数和齿轮的转速有关。关键词:齿轮,噪声,振动,传动误差,动态模型。