摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
简介。最近的Moiré材料激增已大大扩大了具有强相关电子的实验平台的数量。虽然相关的绝缘状态和扭曲双层石墨烯中的超导性[1-4]的超导能力启动,但过渡金属二分法(TMD)材料的双层中电子相关性的强度超过了石墨烯cousins中的材料[5]。在TMD中进行的实验揭示了Mott绝缘子的特征[6-10],量子异常的霍尔效应[11]和 - 在杂词中 - 分数纤维上的莫特 - 木晶体[7,12-16]。当电子电荷定位时,只有自旋程度仍然存在,并且在最近的实验中开始研究TMDMoiréBiLayers中的杂志[17-19]。Heterobilayers在三角形晶格上意识到了一个诱导的Hubbard模型[20-23],因此,局部旋转非常沮丧。这种挫败感可能会导致旋转液相,这是一种异国情调的物质,其物质实现一直在寻求[24,25]。在这封信中,我们表明n =±3 /4的通用Mott-Wigner状态报告了WSE 2 / WS 2双层[12,13]的填充状态,可以实现手性旋转液体[26,27]和Kagome Spin液体(KSL)[28-33]。在这种特殊的填充下,电子位于有效的kagome晶格上,该晶格以其高度的几何挫败感而闻名。TMD双层的可调节性 - 更换扭曲角度,栅极调整,材料在这里,我们证明了现实的模型参数如何导致该kagome晶格的有效自旋模型,并使用广泛的最新密度矩阵构造组(DMRG)模拟研究模型[34,35]。
1。Andrei,E。Y.等。 Moiré材料的奇迹。 nat Rev Mater 6,201–206(2021)。 2。 Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Andrei,E。Y.等。Moiré材料的奇迹。nat Rev Mater 6,201–206(2021)。2。Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。自然556,80–84(2018)。3。Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Tang,Y。等。在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。自然579,353–358(2020)。4。Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Regan,E。C。等。Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。自然579,359–363(2020)。5。Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Wang,L。等。在扭曲的双层过渡金属二分法中相关的电子相。nat Mater 19,861–866(2020)。6。Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。魔法石墨烯超级晶格中的非常规的超导性。自然556,43-50(2018)。7。lu,X。等。超导体,轨道磁铁和魔法双层石墨烯中的相关状态。自然574,653–657(2019)。8。Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cai,J。等。扭曲的Mote2中分数量子异常圆度状态的签名。自然622,63-68(2023)。9。Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Park,H。等。观察分数量化的异常霍尔效应。自然622,74–79(2023)。10。Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Zeng,Y。等。MoiréMote2中分数Chern绝缘子的热力学证据。自然622,69–73(2023)。11。lu,Z。等。自然626,759–764(2024)。多层石墨烯中的分数量子异常霍尔效应。12。Xu,F。等。观察整数和分数量子异常大厅效应
基于硫代构化相位变化材料(PCM)的光子记忆细胞的实现引起了人们的关注,因为它们的快速,可逆和非易失性编程功能。[1]在硅光子平台上整合PCM存储器单元,例如GE 2 SB 2 TE 5(GST)和Aginsbte(AIST),[2] [2]可以使全观内存处理,并在其电子交通方面具有显着的优势,并在带状,速度,速度,速度,速度,速度,速度,速度,速度和并行处理中。[3,4]在开发光学逻辑门,[5,6]可恢复可填充的Photonic电路,[7-9]电气控制的光子记忆细胞,[10,11]等离激源性波导开关,[12,13] Neuro-neuro启发的光子Synapes,[14]和Neural Net-Net-net-net-net-net-net-net-net-net-net-net-net-Net-net-net-net-Net-net-net-Net-net-net-net-Ner ner Net-net-net-nerter Worts中。[15,16]先前的研究系统地研究了光子记忆细胞对二硝基二硝酸盐仪(SI 3 N 4)和硅启用器(SOI)平台的性能,[17,18],在这些平台上,从基线(完全结晶的状态)观察到了单调增加的透射率,该传播是作为拟合程序的拟合功率。这个完善的单调光学编程使可变的可变性能够归因于Hebbian学习的基本生物神经突触的峰值依赖性可塑性(STDP)。[14]值得注意的是,最近在各种光电平台上开发了人工突触,例如[19],基于Chalcogenide玻璃波波[20]和H-BN/WSE 2异质结构。[21]在STDP中,神经元之间的连接强度,即突触重量或突触效率,根据神经元的输出和输入尖峰的相对时机进行调整。[22]突触可塑性的基本公式,即突触重量的变化可以表示为δw¼f(δt),其中δt p p p pre,t pre,t post和t pre分别是后和神经前的时间。δT<0带有δW<0和δT> 0引入长期抑郁(LTD),并带有δW> 0的长期增强(LTP)。
Dichalcogenides (TMDCs) Ahmad Nizamuddin bin Muhammad Mustafa Sami Ramadan 1 , Peter K. Petrov 1 , Huanyu Zhou 1 , Giuseppe Mallia 1 , Nicholas Harrison 1 , Yasir Noori 2 , Shibin Thomas 2 , Victoria Greenacre 2 , Gill Reid 2 , Philip N Bartlett 2 , Kees de Groot 2 , Norbert Klein 1 1 Imperial College London, London, United Kingdom 2 University of Southampton, Southampton, United Kingdom a.bin-muhammad-mustafa21@imperial.ac.uk Two-dimensional (2D) heterostructures composed of graphene and Transition Metal Dichalcogenides (TMDCs) have garnered significant attention owing to their unique physics and potential applications in diverse设备。TMDC,包括MOS 2,WS 2,Mose 2和WSE 2,由于其带隙范围和强烈的轻度 - 互动,因此对电子和光电应用受到了电子和光电应用的青睐。TMDC和石墨烯中都没有悬空键,允许在异质结构中无缝集成,与单物质构型相比,为出色的设备铺平了道路。在使用机械去角质堆叠单个层的同时,化学蒸气沉积(CVD),电沉积和原子层沉积的最新进展为大面积的生长和可伸缩性提供了希望[1] [2]。但是,需要在生长后或生长后的高温暴露,可能会改变石墨烯的特性。我们研究了硫退火对石墨烯对TMDCS生长的电和结构特性的影响。在各种条件下,在温度范围为300-800°C的温度下进行系统退火。参考我们的发现表明,真空退火在石墨烯中诱导蚀刻,这会因硫种类的存在而加剧,从而导致电性能显着降解(图1)。值得注意的是,用自组装单层涂层的石墨烯会减轻这种降解,从而使高质量TMDC在石墨烯上沉积。MOS 2和WS 2对石墨烯的电沉积,然后进行硫退火后处理证明了该策略的功效。这项研究阐明了硫退火在影响石墨烯质量中的关键作用,并为TMDC在石墨烯上的生长铺平了道路,用于高性能电子应用。
1 - G. Fazio,L。Ferrighi,D。Perilli,C。DiValentin,“掺杂石墨烯的计算电化学作为燃料电池中的电催化材料”,《国际量子化学杂志》,2016,116,116(22),1623-1640。2 - C. Ronchi,M。Datteo,D。Perilli,L。Ferrighi,G。Fazio,D。Selli,C。DiValentin,π“石墨烯中碳单流量的磁性通过混合密度功能计算计算”,《物理化学杂志》,《杂志(联合第一位作者)3 - L. Ferrighi,D。Perilli,D。Selli,C。DiValentin,“缺陷的石墨烯与Cu或Pt(111)表面之间的界面上的水”,ACS应用材料和互动界面,2017,9(35),29932-299941。4 - D. Perilli,D。Selli,H。Liu,E。Bianchetti,C。DiValentin,“ H-BN有缺陷的层作为巨型N-供体宏观细胞,用于CU ADATOM捕获来自基础金属底物的Cu Adatom诱捕”,《物理化学杂志》,2018,2018,122(41),23610-23610-2610-23610-23610-23610-23610-2362222。(第一作者)5 - T.H.nguyen,D。Perilli,M。Cattelan,H。Liu,F。Sedona,N。A.Fox,C。DiValentin,S。Agnoli,“对石墨烯和六角硼硼之间平面异质结构的单步生长的微观见解”,Nano Research,2019,12(3),675-682。6 - D. Perilli,D。Selli,H。Liu,C。DiValentin,“金属载量和金属硫化有缺陷的H bn的水计算电化学”,Chemsuschem,2019,12,195,1995-2007。(第一作者)7 - H. Liu,D。Perilli,M。Dolce,C。Di Valentin,“对WSE 2X S 2(1-X)单层的NA吸附的洞察:一项混合功能研究”,《混合功能调查》,《杂志》物理学:冷凝物质:2020,32,32,395001。8 - S. Fiori,D。Perilli,M。Panighel,C。Cepek,A。Ugolotti,A,A,Sala,H。Liu,G。Comelli,C。Di Valentin,C。Africh,“'Inside Out Out'成长方法,用于高质量硝基化的石墨烯的'Inside Out'成长方法”,碳,碳,碳,2021,171,171,171,171,704-704-710。
valleytronic,光学,热,磁性和铁电性能在新型异质结构和设备中。它们的弱层间耦合可以通过机械堆叠2D材料来相对简单地制造垂直侵蚀。另一方面,侧面异质结构(LHSS)的层次是现代金属 - 氧化物 - 氧化物 - 氧化导向器磁场晶体效应的基于微电极的基本结构,由于需要更多的复杂生长和兴奋剂技术,因此受到了探索的较少。受到可能从2D LHSS出现的潜在杰出性能和多功能调整自由的鼓励,在该领域进行了多项实验和理论研究。[1] The earliest experimentally realized 2D LHSs were those between graphene and hexagonal boron nitride (hBN) [2–6] grown by chemical vapor depo- sition (CVD), from which prototype field effect transistors (FETs) were demonstrated [2–5] Shortly later, a series of transition metal dichalcogenide (TMDC) mono layer (ML)通过一步或两步的CVD方法制备LHSS,包括MOS 2,MOSE 2,WS 2和WSE 2的组合。[7-12]所有这些TMDC LHSS都显示二极管样电流的整流效应。[26]同时,制造了具有高性能的原型设备,包括光电二极管和互补的金属 - 氧化物 - 半导体晶体管逆变器,[7,10–12]通过控制良好的气体流量切换技术或光刻辅助辅助阴离子的替代品,TMDC LHS的脱位量很清晰。 LHSS仅由一种材料组成,但具有不同的厚度,[16,17]或介电环境[18]在其界面上,产生了电子带隙,整流和光伏效应的修饰。将材料与不同空间对称性组合的2D LHS的其他形式,例如石墨烯-TMDC LHSS [19-22] HBN-TMDC LHSS,[19]石墨烯纳米替伯型LHSS与不同的兴奋剂[23]或宽度[23]或宽度[24] [24]单钙化剂 - 二甲基二苯二苯lhss [26]是通过各种增强的CVD方法创建的,例如机械 - 脱落的辅助CVD,[19]种子促进的CVD,[20]由等离子体蚀刻定义的模板生长,由等离子体蚀刻[21] [21] [21]和热层转化化学构图。
最近,新兴的量子材料 [1] 实现了以前不可能实现的功能,目前正在彻底改变先进量子技术的科学发展和创新。它的出现推动了先进量子光子学、先进通信、量子计算、先进光电器件等的发展 [2]。它为探索许多新的尖端科学和可能性提供了机会。在其众多可能的应用中,当前需要的一项基本发展是超快先进无线通信,从量子材料中寻找其解决方案是一个新的视角和潜在领域。当今快速发展的社会需要高数据速率、超低延迟、更好的频谱效率和在更高频段工作的设备。为了解决这个问题,数据速率需要达到每秒兆兆比特 (TBPS) 的数量级,从而导致新兴的第六代 (6G) 网络,这可以通过将操作频段推向潜在的太赫兹 (THz) 范围来实现 [3]。石墨烯是所有二维 (2D) 材料之母,它的发现获得了诺贝尔奖,从那时起,许多二维材料被发现。 2D 材料是原子级薄的材料,包括石墨烯、过渡金属二硫属化物 (TMDC),例如 MoS 2 [6]、WS 2 、MoSe 2 [7]、WSe 2 [8]、六方氮化硼 (h-BN)、磷烯、硅烯(2D 硅)、锗(2D 锗)、硼烯(2D 硼)和 MXenes(2D 碳化物/氮化物)[9]。由于 2D 材料为原子级薄,且其独特的电子和光学特性源于量子限制效应 [9],因此被称为“量子材料” [1]。可调带隙、大载流子迁移率和增强的光物质相互作用等特性使 2D 材料成为太赫兹应用的有希望的候选材料,可用作发射器、探测器、调制器和光源。其独特的光-物质相互作用源于激子能量动力学,这种动力学仅因二维结构中的量子限制而存在,由于其与太赫兹频率的共振,透射率增强。尽管石墨烯具有非线性光学行为、高光学透明度、高载流子迁移率和表面电导率等非凡特性 [5],使其适用于太赫兹应用,但它受到空气污染性质、零带隙和不稳定的离域 π 电子的限制,而这些限制在 TMDC 等其他二维材料中并不存在。此外,TMDC 的高调制效率推动了使用石墨烯制造异质结构的创新新趋势 [5]。这种异质结构结合了石墨烯的特性,同时克服了其缺点,从而提供了进一步增强和更好的性能 [10]。有关这方面的更多细节将在演讲中讨论和描述。
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。