近年来,许多效果已致力于寻找作为光催化剂的新材料。对光触发的催化过程的极大兴趣源于利用地球上最清洁,最丰富的能源,即来自阳光的电磁辐射。它代表了应对日益增长的全球警告以及严格连接的空气污染和水污染的独特且不可错过的机会[1,2]。这项不含化石燃料的生态友好技术的开发导致高级氧化和还原过程能够补充废水[3,4],从而从水分拆料中产生H 2 [5-7],并分别将CO 2减少到燃料中[8,9]。在这些年中,关于太阳能转化的最佳态度的材料类是基于过渡金属氧化物的半导体[10-12]。通常,半导体材料的特征是带有带子带(VB)的电子,可以通过吸收通过事件光带来的适当能量带来的能量,从而在VB中留下照片诱导的孔[13]。因此,VB中的光促进氧化孔和CB中的还原电子产生了半导体表面的复杂氧化还原反应。由于TIO 2在3.2 eV附近保持带隙,因此需要进行掺杂过程,该事实属于电磁频谱的紫外线范围。从历史上看,第一代半导体光催化剂基本上是基于Tio 2材料的发展[14]。随后是第二代材料,其中Tio 2用金属和非金属元素掺杂[15,16]。实际上,影响地球表面的太阳辐射的UV成分仅为5%,不足以将TiO 2作为光催化剂激活。另一方面,可见的组件徘徊在43%附近;这样的数量促使科学家提高了
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
1 二.物理研究所,Justus-Liebig-Universit¨at,35392 Giessen,德国 2 GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH,64291 Darmstadt,德国 3 TRIUMF,温哥华,不列颠哥伦比亚省 V6T 2A3,加拿大 4 曼尼托巴大学物理与天文系,温尼伯,曼尼托巴省 R3T 2N2,加拿大 5 波兰科学院核物理研究所,PL-31 342 Krak´ow,波兰 6 玛丽居里大学物理研究所,PL-20 031 Lublin,波兰 7 维多利亚大学物理与天文系,维多利亚,不列颠哥伦比亚省 V8P 5C2,加拿大 8 不列颠哥伦比亚大学物理与天文系,温哥华,不列颠哥伦比亚省 V6T 1Z1,加拿大 9 物理与爱丁堡大学天文学系,爱丁堡 EH9 3FD,苏格兰,英国 10 西蒙弗雷泽大学化学系,本拿比,不列颠哥伦比亚省 V5A 1S6,加拿大 11 麦吉尔大学物理系,H3A 2T8 蒙特利尔,魁北克省,加拿大 12 斯特拉斯堡大学,CNRS,IPHC UMR 7178,F-67 000 斯特拉斯堡,法国 13 约克大学物理系,约克 YO10 5DD,英国 14 卡尔加里大学物理与天文学系,卡尔加里,艾伯塔省 T2N 1N4,加拿大 15 胡阿里布迈丁科技大学物理学院,BP 32,El Alia,16111 Bab Ezzouar,阿尔及尔,阿尔及利亚 16 Academy of Sciences, BG-1784 Sofia, Bulgaria 17 Helmholtz Forschungsakademie Hessen fr FAIR (HFHF), GSI Helmholtzzentrum fr Schwerionenforschung, Campus Gieen, 35392 Gieen, German 18 郑州大学物理与微电子学院,郑州 450001,中国(日期:2021 年 7 月 20 日)
量子计算机的发展受到了这样一种想法的刺激,即在解决计算任务时实现比基于传统原理的机器高得多的速度,并且与密码学(Shor,1994)、搜索(Grover,1996)、优化(Farhi 等人,2014)、量子系统模拟(Lloyd,1996)和求解大型线性方程组(Harrow 等人,2009)等问题相关。现有的量子计算设备原型使用各种物理平台来实现量子计算协议,例如超导电路(Arute 等,2019 年;Wu 等,2021 年)、半导体量子点(Xue 等,2022 年;Madzik 等,2022 年;Noiri 等,2022 年)、光学系统(Zhong 等,2020 年;Madsen 等,2022 年)、中性原子(Ebadi 等,2021 年;Scholl 等,2021 年;Henriet 等,2020 年;Graham 等,2022 年)和捕获离子(Zhang 等,2017 年;Blatt and Roos,2012 年;Hempel 等,2018 年)。尽管有几项实验报告称在解决采样问题方面取得了量子优势(Arute 等人,2019 年;Wu 等人,2021 年;Zhong 等人,2020 年),但现有一代量子计算机的计算能力有限。这些限制与以下事实有关:为了解决实际相关的计算问题,必须将设备相对于所用信息载体数量(例如,量子比特,它们是经典比特的量子对应物)的可扩展性与对量子比特的高质量操作相结合
我们报告了Millikelvin绝热去磁性消防制冷(MK-ADR)候选材料Naybgeo 4的合成,表征,低温磁和热力学测量值,该候选物质Naybgeo 4表现出扭曲的YBO 6磁性单元的平方晶格。磁化强度和特定热量表明弱相互作用的有效自旋1 /2低于10 K的有效自旋1 /2矩,质量 - 韦斯温度仅为15 mk,可以通过1 t级的磁场进行偏振。对于ADR性能测试,我们启动了从5 t的温度下的5 t启动〜2 k的温度,并达到〜2 k的温度,并达到150毫克的最低温度。变暖曲线表明在210 MK处的热容量中的磁性急剧过渡,这仅表示磁性弱弱。与在相似条件下研究的沮丧的ytterbium-Ox-odr ADR材料相比,S GS≃101MJ K-1 cm-3的熵密度并保持低于2 k的2 k的时间是竞争性的,而最小温度则更高。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
DirectLase 是 OFS Fitel, LLC 的商标。OFS 保留随时更改本文件中描述的价格和产品的权利,恕不另行通知。本文件仅供参考,不旨在修改或补充任何 OFS 产品或服务的保证或规格。
DirectLase 是 OFS Fitel, LLC 的商标。OFS 保留随时更改本文件中描述的价格和产品的权利,恕不另行通知。本文件仅供参考,不旨在修改或补充任何 OFS 产品或服务的保证或规格。
光学频率梳是精密计量实验必不可少的工具,其应用范围从痕量气体的远程光谱传感到光学原子钟的表征和比较,以实现精密计时,以及探索标准模型以外的物理现象。本文介绍了基于自由空间激光器和 Er/Yb 共掺杂玻璃增益介质的电信波段自锁模频率梳的架构和完整特性。该激光器为基于 Er:光纤激光器的频率梳提供了一种强大且经济高效的替代方案,同时提供与 Ti:蓝宝石激光系统类似的稳定性和噪声性能。最后,使用两个超稳定的 1157 nm 和 1070 nm 光学参考进行高稳定性频率合成,并通过将这些参考划分到微波域来产生低噪声光子微波,证明了 Er/Yb:玻璃频率梳的实用性。