摘要:传统的抗病毒肽(AVP)发现是一个耗时且昂贵的过程。这项研究介绍了AVP-GPT,这是一种新型的深度学习方法,利用基于变压器的语言模型和专门为AVP设计设计的多模式体系结构。AVP-GPT表现出非凡的效率,在GPU系统上产生了10,000个独特的肽,并在两天内识别潜在的AVP。在呼吸道合胞病毒(RSV)数据集(AVP-GPT)中预先训练,成功地适应了流感病毒(INFVA)和其他呼吸道病毒。与LSTM和SVM等最新模型相比,AVP-GPT的困惑性显着降低(2.09 vs. 16.13)和较高的AUC(0.90 vs. 0.82),表明肽序列序列预测和AVP分类。AVP-GPT产生了一套具有出色新颖性的肽,并确定了抗病毒成功率明显高于常规设计方法的候选者。值得注意的是,AVP-GPT对RSV和INFVA产生了新的肽,具有出色的效力,其中包括四种肽,其EC50值在0.02 um左右,这是迄今为止报告的最强的抗RSV活性。这些发现突出了AVP-GPT彻底改变AVP发现和开发的潜力,从而加速了新型抗病毒药。未来的研究可以探索AVP-GPT在其他病毒靶标上的应用,并研究替代AVP设计策略。
抽象病毒样颗粒(VLP)是病毒结构蛋白,因为它们不含病毒遗传材料,因此不感染。它们是安全有效的免疫刺激剂,并且在疫苗发育中起着重要作用,因为它们具有内在的免疫原性来诱导细胞和体液免疫反应。在抗病毒疫苗的设计中,基于VLP的疫苗吸引了多功能候选者,其优点,例如自组装纳米级结构,重复性的表面表现,易于遗传和化学修饰的易用性,多功能性作为抗原呈现平台,抗原性免疫生成的疫苗和更高的疫苗接种,并具有更高的疫苗接种,并具有与之相比的效果。在这篇综述中,我们讨论了诱导细胞和体液免疫反应的VLP疫苗的机制。我们概述了构造有效的基于VLP的疫苗时的大小,形状,表面电荷,抗原表现,遗传和化学修饰以及表达系统的影响。总结了抗病毒VLP疫苗及其临床试验的最新应用。
摘要:当前的 Covid-19 大流行指出了即使是最先进的社会在对抗病毒 RNA 感染方面也存在一些重大缺陷。再一次,事实表明缺乏有效的药物来控制 RNA 病毒。适体是多种分子(包括蛋白质和核酸)的有效配体。它们的特异性和作用机制使它们成为干扰病毒 RNA 基因组中编码功能的非常有前途的分子。RNA 病毒将基本信息存储在保守的结构基因组 RNA 元素中,这些元素促进了感染周期的重要步骤。这项工作描述了我们实验室进行的两个有据可查的 RNA 适体实例,它们分别对 HIV-1 和 HCV RNA 基因组的高度保守的结构域具有抗病毒活性。这两个很好的例子说明了适体在对抗 RNA 病毒的治疗空白方面的潜力。
病毒爆发的出现一直对全球公共卫生系统构成重大挑战。流感,人类免疫缺陷病毒(HIV),肝炎,埃博拉病毒以及最近严重严重的急性呼吸综合症冠状病毒2(SARS-COV-2)等病毒迫切需要有效的抗病毒剂来减轻这种爆发的影响。抗病毒药理学已经显着进化,开发了新型药物来瞄准病毒生命周期的各个阶段。这些进步不仅为现有感染提供了治疗选择,而且还有望解决未来的大流行。这些新型抗病毒药物的药理学涉及对它们的作用机理,药代动力学,药效学和临床意义的深刻理解,所有这些都有助于在病毒爆发期间优化其使用。
发现具有最小毒性或对正常细胞副作用的新型生物相容性和可生物降解的聚合物制剂是微生物感染和癌症治疗的主要并发症。已经发现了用于聚(氧化乙烷)(PEO)或聚(乙二醇)(PEG)聚合物的各种化学,生物和药物功能。增强抗菌和抗癌活性,结合了金属或金属氧化物纳米颗粒(NP),例如银(Ag),氧化铜(CUO)和氧化锌(ZnO)NPS,在该半晶体和线性聚合物中可能是有效策略。更重要的是,PEO可以形成可以直接应用于身体部位的水凝胶,例如皮肤或粘膜进行局部治疗。PEO通过PEO增加口服吸收和抗癌活性来装饰抗癌药物的纳米载体。PEO聚合物对抗病毒药物作为有效递送系统的各种微型和纳米形式的各种微观成分表现出令人鼓舞的结果。根据最近的进展,讨论了这一微型综述,抗菌,抗病毒和抗肿瘤作为PEO及其衍生物的三种主要治疗应用。
要点:本赛季可用的季节性流感疫苗抗病毒药物包括三种神经氨酸酶抑制剂(口服oseltamivir,iv peramivir和吸入Zanamamivir)和口服cap依赖cap依赖的核酸内核酸杆菌baloxavir marboxavir Marboxil。他们都对流感和B病毒都活跃。▶抗病毒治疗在疾病发作后48小时内开始时最有效。▶建议患有住院,严重,复杂或进行性疾病的疑似或确认流感的患者,或者发生并发症的风险增加,即使在疾病发作后超过48小时开始。▶可以考虑使用可疑或确认流感的健康症状门诊患者,如果在疾病发作后48小时内开始,他们的流感并发症的风险就不会增加。▶奥塞达米维尔(Oseltamivir)是治疗儿童,孕妇,住院患者以及严重,复杂或进行性疾病的门诊患者的首选。▶在48小时内,应在48小时内以非常高的并发症的风险在48小时内考虑使用oseltamivir,Zanamivir或Baloxavir的暴露后预防,这些并发症的风险尚未收到年度流感疫苗或流感疫苗接种时可能无效;不建议对暴露于流感的健康人员使用。
1 澳大利亚维多利亚州克莱顿,莫纳什大学生物医学发现研究所生物化学与分子生物学系 2 澳大利亚维多利亚州帕克维尔,沃尔特和伊丽莎霍尔医学研究所 3 澳大利亚堪培拉,澳大利亚国立大学约翰科廷医学研究院免疫学与传染病系 4 澳大利亚维多利亚州克莱顿,莫纳什大学生物医学发现研究所微生物学系 5 澳大利亚维多利亚州帕克维尔,墨尔本大学 Bio21 分子科学与生物技术研究所生物化学与药理学系 6 澳大利亚维多利亚州帕克维尔,墨尔本大学医学生物学系 7 澳大利亚维多利亚州普拉兰,莫纳什大学阿尔弗雷德医院与中央临床学院传染病系
3.0 2021 年 11 月 4 日 • 扎那米韦吸入剂状态描述扩展为“已获准在欧盟使用但未在爱尔兰销售;扎那米韦吸入器仅在爱尔兰作为未经许可的产品提供” • 删除帕拉米韦(已于 2020 年 11 月 20 日从欧盟撤出) • 更新了奥司他韦口服混悬液的许可适应症,包括治疗 1 岁以下儿童,包括足月新生儿(根据 EMA 授权) • 奥司他韦获准在流感大流行爆发期间对 ≤ 1 岁的人进行流感暴露后预防 • 更新了 SmPC 链接 • 更改了所有表格中剂量表达的措辞,例如 BD 更改为每 12 小时 • 重命名和更新附录 B,并删除所有未经 EMA 授权用于治疗/预防流感的药物
我们的研究计划旨在探索基于分子病毒学和免疫学发展的最新发展的抗病毒化疗和免疫干预的新方法。个别研究项目涉及抗病毒小分子(A区域),免疫细胞介导的抗病毒作用(B区域)和基于抗体的方法(C区)。总的来说,我们设想了将抗病毒化学治疗与免疫干预措施与控制持续病毒控制的最有希望的途径相结合的多模式抗病毒策略。对于优秀的候选人,我们提供了基于研究休假的1年奖学金,嵌入了GRK 2504培训计划中的MD论文项目。
本文件由安大略省公共卫生局 (PHO) 制定。PHO 为安大略省政府、公共卫生组织和医疗保健提供者提供科学和技术建议。PHO 的工作以出版时目前最佳可用证据为指导。本文件的应用和使用由用户负责。PHO 不承担任何此类应用或使用所产生的责任。本文件可在未经许可的情况下复制,仅用于非商业目的,并且必须注明 PHO 的版权。未经 PHO 明确书面许可,不得对本文件进行任何更改和/或修改。