遗传的功能和物理单位从父母传给后代。一个基因是在染色体上占据特定位置的DNA(A,C,G,T)的序列。基因编码个体的特定特征。
单元格,将使用特定的Y-chromosoms分析系统进行测试。将使用采样套件随附的条形码来识别您的Y-chromosom体配置文件。没有您的姓名或出生日期之类的个人信息。您将无法通过DNA配置文件来识别。您的匿名DNA配置文件将是用于开发英国Y-chromosome参考数据库的数千个,也将与全球Y-Chromosome Haplotype参考数据库(YHRD)共享。
8p12 染色体上的肿瘤抑制因子长链非编码 RNA (TSLNC8) 是一种 RNA 基因,可产生从两条链间转录的长链非编码 RNA。近年来,它在人类恶性肿瘤中的重要作用引起了广泛关注。已使用各种技术在组织标本和细胞系中对 TSLNC8 的表达进行了分析,包括逆转录定量聚合酶链反应 (RT-qPCR)、原位杂交 (ISH) 和微阵列分析。此外,还进行了涉及细胞和动物模型中 TSLNC8 功能丧失和/或获得的功能研究。这些研究突出了 TSLNC8 对关键肿瘤相关过程的影响,包括迁移、侵袭和转移。此外,TSLNC8 已成为一种能够调节关键信号通路(如 Hippo、STAT3、WNT/β-catenin 和 MAPK 通路)的调节剂。在这篇综述中,我们综合了体外和体内研究的结果以及对临床样本进行的分析,以全面了解 TSLNC8 作为有前途的肿瘤生物标志物和治疗干预的潜在靶点的多方面作用。
自发染色体重排 (CR) 在物种形成、基因组进化和作物驯化中起着至关重要的作用。为了能够利用 CR 的育种潜力,人们开始通过 X 射线照射将染色体片段化,从而进行植物染色体工程。随着 CRISPR/Cas 系统的兴起,人们可以高效地在任意染色体位置诱导双链断裂 (DSB)。这使得预先设计的染色体工程达到了全新的水平。可以通过诱导染色体易位来打破特定基因之间的遗传连锁。可以恢复抑制遗传交换的自然倒位以进行育种。此外,人们已经开发出各种通过缩小常规标准 A 染色体或额外 B 染色体来构建微型染色体的方法,这些方法可以作为未来植物生物技术的载体。最近,人们可以构建一个功能性的合成着丝粒。此外,人们已经建立了不同的基因组单倍体化方法,其中一些方法基于着丝粒操作。未来,我们期望看到更复杂的重组,这些重组可以与重组酶等先前开发的工程技术相结合。染色体工程可能有助于重新定义遗传连锁群、改变染色体数量、在微型载货染色体上堆叠有益基因,或建立遗传隔离以避免杂交。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 10 月 14 日发布。;https://doi.org/10.1101/2021.10.13.462063 doi:bioRxiv 预印本
与常染色体不同,许多物种的性染色体对不会发生基因重组。有人提出,抑制重组是由自然选择造成的,这种自然选择倾向于将性别决定基因与这种染色体上的突变紧密联系在一起,这种突变对某一性别有利,而对另一性别不利(这被称为性拮抗突变)。目前尚未描述过这种选择导致抑制重组的例子,但孔雀鱼种群表现出性拮抗突变(影响雄性颜色),预计会进化出抑制重组。在孔雀鱼现存的近亲中,Y 染色体已抑制重组,并失去了 X 上的所有基因(这被称为基因退化)。然而,尽管孔雀鱼 Y 染色体携带性拮抗突变,但它偶尔会与 X 染色体重组。我们描述了孔雀鱼最近进化出一种新的 Y 染色体的证据,这种 Y 染色体来自与这些亲属相似的 X 染色体,取代了旧的、退化的 Y 染色体,并解释了为什么孔雀鱼配对仍然会重组。雄性着色因素可能在新的 Y 染色体进化之后出现,并且已经进化出仅限于雄性的表达方式,这是避免两性冲突的一种不同方式。
DNA双螺旋结构的发现以及DNA测序的最新进展为基因组的合成提供了动力。2 – 4合成生物学家不再满足于仅仅复制自然基因组,而是雄心勃勃地想要创建新版本的基因组。5 – 19计算机辅助模拟允许重新设计具有特定功能的基因组,并且遵循基因组设计的最基本原则,即保持细胞活力7,11,12,20,可以引入自定义遗传特征以增加基因组的灵活性。例如,可以实现重新编码、引入重组位点和水印序列9以及删除重复序列和不稳定元素。 12,20 新设计的基因组序列被分层划分为寡核苷酸 7,9,21,然后在体内和体外组装成“短” 22,23 “中” 24 – 26 和“长” 13,20 DNA 片段。最后,将化学合成的 DNA 移植到细菌或酵母细胞中,取代天然遗传物质。11,27
。CC-BY-NC 4.0国际许可证的永久性。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在2025年1月16日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.15.633104 doi:Biorxiv Preprint
染色体工程已在酵母中成功尝试,但在包括哺乳动物在内的高等真核生物中仍然具有挑战性。在这里,我们报告了小鼠中的程序性染色体连接,这导致在实验室中产生了新的核型。使用单倍体胚胎干细胞和基因编辑,我们融合了两条最大的小鼠染色体,即染色体 1 和 2,以及两条中等大小的染色体,即染色体 4 和 5。染色质构象和干细胞分化受到的影响最小。然而,携带融合染色体 1 和 2 的核型导致有丝分裂停滞、多倍体化和胚胎致死,而由染色体 4 和 5 组成的较小融合染色体能够传递给纯合后代。我们的结果表明在哺乳动物中进行染色体水平工程的可行性。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是本版本的版权持有人,该版本发布于2023年9月22日。 https://doi.org/10.1101/2023.09.21.558754 doi:Biorxiv Preprint