正电子发射断层扫描(PET)是一种用于诊断癌症等疾病的核成像技术。来自圣裘德儿童研究医院科学家的创新进步正在增强该技术检查神经疾病迹象的能力。研究人员将药物Edaravone的重新定位为一种用于治疗肌萎缩性侧索硬化症(ALS)的抗氧化剂,作为与中枢神经系统宠物成像一起使用的探针。
高水平的炎性细胞因子诱导神经毒性并催化浮力驱动的神经变性,但是来自小胶质细胞的特定释放机制仍然难以捉摸。在这里,我们表明分泌自噬(SA)是囊泡货物分泌自噬的非悠久模态,可通过SKA2和FKBP5信号来调节神经蛋白 - 流量介导的神经变性。SKA2通过抵消FKBP5功能来抑制SA依赖性IL-1β释放。海马SKA2在雄性小鼠中敲低过度激活SA,从而导致神经蛋白肿瘤,随后的神经变性和六周内完全的河马萎缩。SA的过度激活增加了IL-1β的释放,导致了炎症前喂养的恶性循环,包括NLRP3插入式浮膜激活和Gasdermin d介导的神经毒性,最终导致神经变性。是由男性和雌性人类大脑的蛋白质表达和共免疫沉淀分析的结果表明,SA在阿尔茨海默氏病中被过度激活。总体而言,我们的发现表明,SKA2调节的,多动的SA促进了神经蛋白 - 浮动,并与阿尔茨海默氏病有关,从而提供了对神经素浮肿生物学的机械洞察力。
摘要探索神经变性和脑小血管疾病(SVD)可以介导2型糖尿病和较高痴呆症风险之间的关联。分析样本由2228名参与者组成,来自三城市研究,年龄在65岁及65岁及以上,没有痴呆症的痴呆症。糖尿病是通过药物摄入或禁食或非燃料升高的葡萄糖水平来定义的。 在最多12年的随访期间,每2至3年评估痴呆状态一次。 脑实质分数(BPF)和白质超强度体积(WMHV)分别选择为神经变性的标记和脑SVD。 我们使用线性和COX模型对年龄,性别,教育水平,高血压,高胆固醇血症,BMI,BMI,吸烟和饮酒状态,APOE-apoE-apoE-apoE-apoe-apoE-ε4状态以及研究地点进行了调整,对基线BPF和WMHV(介体)对糖尿病与痴呆症风险之间关联的影响进行了调解分析。 基线时,有8.8%的参与者患有糖尿病。 糖尿病(是vs. no)与较高的WMHV(β糖尿病= 0.193,95%CI 0.040; 0.346)和较低的BPF(β糖尿病= -0.342,95%CI -0.474; -0.474; −0.210; -0.210; − -0.210; -195%),以及1.1的风险超过了12年。 CI 1.04; 糖尿病状况与痴呆症风险之间的关联是由较高的WMHV(HRDIAB = 1.05,95%CI 1.01; 1.11; 1.11,介导的零件= 10.8%)和较低的BPF(HR DIAB = 1.12,95%CI 1.05; 1.20; 1.20; 1.20; 1.20,介导的部分= 22.9%)介导的。 这项研究表明,神经退行性变性和脑SVD统计上都解释了糖尿病与痴呆症之间几乎30%的关联。糖尿病是通过药物摄入或禁食或非燃料升高的葡萄糖水平来定义的。在最多12年的随访期间,每2至3年评估痴呆状态一次。脑实质分数(BPF)和白质超强度体积(WMHV)分别选择为神经变性的标记和脑SVD。我们使用线性和COX模型对年龄,性别,教育水平,高血压,高胆固醇血症,BMI,BMI,吸烟和饮酒状态,APOE-apoE-apoE-apoE-apoe-apoE-ε4状态以及研究地点进行了调整,对基线BPF和WMHV(介体)对糖尿病与痴呆症风险之间关联的影响进行了调解分析。基线时,有8.8%的参与者患有糖尿病。糖尿病(是vs. no)与较高的WMHV(β糖尿病= 0.193,95%CI 0.040; 0.346)和较低的BPF(β糖尿病= -0.342,95%CI -0.474; -0.474; −0.210; -0.210; − -0.210; -195%),以及1.1的风险超过了12年。 CI 1.04;糖尿病状况与痴呆症风险之间的关联是由较高的WMHV(HRDIAB = 1.05,95%CI 1.01; 1.11; 1.11,介导的零件= 10.8%)和较低的BPF(HR DIAB = 1.12,95%CI 1.05; 1.20; 1.20; 1.20; 1.20,介导的部分= 22.9%)介导的。这项研究表明,神经退行性变性和脑SVD统计上都解释了糖尿病与痴呆症之间几乎30%的关联。
Andrea Vergallo,Pablo Lemercier,Enrica Cavedo,Simone Lista,Eugeen Vanmechelen等。等离子体ββ-SECRET1 1。 。 。 。 。 。10.1002/alz。
ftld是引起痴呆症的主要原因,仅次于阿尔茨海默氏病和刘易体内痴呆症。VCP基因中的突变已知会导致遗传性ftld。 以前的合作研究,包括东京科学学院Hitoshi Okazawa教授的团队和Masaki Sone副教授Masaki Sone在Toho University的团队的研究,发现在使用老鼠模型的数十年后,胎儿阶段的DNA损害会影响FTLD的发作。VCP基因中的突变已知会导致遗传性ftld。以前的合作研究,包括东京科学学院Hitoshi Okazawa教授的团队和Masaki Sone副教授Masaki Sone在Toho University的团队的研究,发现在使用老鼠模型的数十年后,胎儿阶段的DNA损害会影响FTLD的发作。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人本版本发布于2023年5月15日。 https://doi.org/10.1101/2023.05.10.540284 doi:Biorxiv Preprint
认知储备是积极应对脑恶化和延迟神经退行性疾病认知下降的能力。它通过通过差异招募大脑网络或替代认知策略来优化性能来运行。我们使用亨廷顿疾病(HD)作为神经变性的遗传模型研究了认知储备,以比较premifest HD,明显的HD和控制。与明显的高清相反,尽管神经变性,但前命中率HD仍以控制为控制。通过分解决策基础的认知过程,漂移扩散模型揭示了一个响应范围,该响应逐渐从控件到premifest和明显的HD逐渐不同。在这里,我们表明,Premanifest HD中的认知储备得到了增加的证据积累率增加,以补偿做出决定所需的证据数量的异常增加。这种较高的速率与左上顶和海马肥大有关,并且在疾病进展过程中表现出铃铛形状,这是补偿的特征。
亨廷顿疾病(HD)是一种致命的遗传疾病,其中大多数纹状体投射神经元(SPN)退化。有关HD发病机理的中心生物学问题是亨廷顿蛋白(HTT)基因中引起疾病的DNA重复膨胀(CAG N)如何导致数十年的明显潜伏期后神经变性。遗传的HTT等位基因具有更长的CAG重复急性疾病发作;这种重复的长度也随时间变化,产生了体细胞镶嵌性,调节DNA重复稳定性的基因可能会影响高清年龄。了解细胞的CAG重复长度与其生物学状态之间的关系,我们开发了一种单细胞方法,用于测量CAG重复长度以及全基因组RNA的表达。我们发现,HTT CAG重复在HD-vulnerable SPN中从40-45个CAG扩展到100-500+ CAG,而在其他纹状体细胞类型中则不扩展,而这些长的DNA重复扩展在不同时间通过单个SPN获得。令人惊讶的是,从40个CAGS的体细胞膨胀对基因表达没有明显的影响 - 但是具有150-500+ CAGS的神经元具有深刻的基因表达变化。这些表达的变化涉及数百个基因,并在进一步的CAG重复扩张旁边升级,侵蚀了阳性,然后神经元同一性的负面特征,并在衰老/凋亡基因的表达中达到顶峰。跨高清阶段的纹状体神经元丧失率反映了神经元进入该生物学变形状态的速率。我们得出的结论是,在HD过程中的任何时候,大多数神经元具有无害的(但不稳定的)亨廷顿基因,而HD发病机理几乎是神经元生命的DNA过程。我们的结果表明,纹状体神经元中的HTT CAG重复进行数十年的生物学安静膨胀,因此,由于它们异步越过高阈值,因此SPN会使SPN迅速和异步变性。
继承和与年龄相关的视网膜变性是大量异质疾病的标志,是当今无法治疗的失明的主要原因。遗传因素在视网膜DE世代中起着主要的致病作用,用于单基因疾病(例如色素性视网膜炎)和具有已建立的遗传危险因素(例如与年龄相关的黄斑变性)的复杂疾病。基因分型技术和眼睛成像背面的进展正在完成我们对这些疾病的理解及其在患有视网膜变性的患者流行病中的表现。很明显,无论遗传原因,视网膜疾病中的大多数视力丧失是由于光感受器功能的丧失而导致的。围绕光感受器功能丧失的时间和情况决定了每个患者使用的适当治疗方法。在这种方法中,基因治疗正迅速成为适用于诊所的治疗现实。我们从实验室工作到临床应用的巨大转变是由于我们在疾病遗传和机制,基因递送载体,基因编辑系统以及光感受器功能丧失的补偿策略中所取得的进步。在这里,我们根据患有遗传性视网膜退化的患者人群的需求提供了视网膜基因疗法现有方式及其相关性的概述。
1得克萨斯大学里奥格兰德分校背景糖尿病性视网膜病(DR)仍然是美国人时代失明的主要原因。尚未有任何有效的治疗方法可以防止病情发作,只是治疗后期疾病。对疾病早期迹象的研究表明,视网膜神经层的变化是最早的疾病迹象,是在当前定义DR的血管变化之前。这引起了人们对DR涉及的神经变性的发病机理的兴趣。本综述解释了当前对DR中神经元变性的细胞和分子机制的理解,以及针对每种机制研究的潜在药理干预措施。方法进行了文献综述,以查看已定义并与DR相关的神经变性的每个主要细胞和分子途径,有关药理学干预措施的最新研究以及视网膜神经细胞与糖尿病中的微腔之间的关系,以促进神经变性。文章来自PubMed或最新的文章。结果多元醇,PKC,己胺和年龄途径已显示在高血糖中上调。多元途径描述NADPH,这是谷胱甘肽再生所必需的。神经细胞变得无法忍受ROS。果糖和山梨糖醇积聚在细胞中,导致肿胀。epalrestat,FDA批准糖尿病神经病以靶向醛糖还原酶,具有DR的潜力。PKC和rage途径促进了产生ROS的NADPH氧化酶。PKC-抑制剂Ruboxistaurin一直在临床试验中治疗糖尿病性视网膜病。己糖胺途径中间葡萄糖对线粒体有毒,并促进过氧化葡萄糖。benfotiamine,一种B1衍生物,可能会抑制年龄,PKC和六胺途径。dm会导致pro-nGF/ngf比率的不平衡,从而促进凋亡。NGF眼滴显示通过标准化比例来治疗DME的希望。BDNF比率也以相同的方式影响。持续补充BDNF会抑制光感受器的死亡,但是常规注射无效。DM发作后一周在视网膜组织中看到升高的TNF-升高,刺激外部凋亡。eTanercept,TNF-抑制剂,似乎会减慢DR的进展。高血糖下调用于神经元存活的PI3K/AKT途径。胰岛素促进了这种保护侵蚀凋亡的途径,但同时促进了凋亡。muller细胞和小胶质细胞被高血糖激活并释放炎症介质并引起谷氨酸兴奋性毒性。Muller细胞激活在DM发作后1.5个月,在6周内瞬时BBB分解以及胶质反应性提高。tau调节是由星形胶质细胞介导的。异常TAU引起星形胶质细胞功能障碍并导致神经元死亡。一生氧化物被ROS形成毛的硝酸盐并创造神经毒性环境而被灭活。VEGF促进了低水平的神经元存活,但通过高水平的BDNF和GNDF降解而凋亡。升高的ROS可促进VEGF并抑制其保护作用。结论已经描述了细胞和分子的糖尿病性视网膜血管病之前神经退行性的几种机制。许多研究详细介绍了导致视网膜血管病的神经退行性途径的潜力。继续研究哪种机制是开发有效治疗以防止DR发作的必要条件。