§ 量子效率有限(无雪崩倍增)§ 读出噪声(电路噪声)限制了最低可检测信号§ 积分时间长
与传统体硅相比,绝缘体上硅(SOI)衬底具有许多优势,包括低漏电流、低电容、低功耗、更好地抵抗短沟道效应(SCE)和卓越的缩放能力[1 – 4]。这使得SOI衬底不仅适用于传统的MOSFET,而且由于天然的衬底隔离[5 – 8]和更简单的多栅极设计,它也对新型半导体器件具有吸引力,例如TFET和Z2-FET。此外,建立在SOI平台上的光电探测器(PD)也表现出优异的光电性能。高工作速度、高抗辐射和低寄生电容的优势使基于SOI的PD在电子和光子集成电路(EPIC)、光通信系统和航空航天等许多应用领域中极具竞争力[9 – 16]。为了在 SOI 薄膜中形成 pn 光电二极管,通常使用常规离子注入来掺杂 Si 沟道 [17]。然而,离子注入会损坏并降低 Si 的质量,这个问题在缺乏种子层以促进再结晶的超薄 SOI 薄膜中尤其严重。此外,用于激活掺杂剂的高温退火可能会引起应力和损坏,并进一步降低器件的性能。为了克服这些缺点,可以使用电场诱导的静电掺杂 [18,19] 来形成 pn 结并完全避免离子注入。之前,我们已经证明在
为了解决“存储墙”问题,人们迫切需要具有高速度和高密度的存储设备。在这里,我们展示了一种高度可扩展的三维可堆叠铁电二极管,其整流极性由 Hf 0.5 Zr 0.5 O 2 薄膜的极化反转调制。通过利用原子分辨率球差校正 STEM 可视化铪/锆晶格序和氧晶格序,我们揭示了 Hf 0.5 Zr 0.5 O 2 薄膜的自发极化与氧原子位移之间的相关性,从而明确地识别出 Hf 0.5 Zr 0.5 O 2 薄膜中的非中心对称 Pca2 1 正交相。我们进一步在 8 层 3D 阵列中实现了这种铁电二极管。演示了高达 20 ns 的运行速度和超过 10 9 的耐用性。超过 100 的内置非线性保证了其自选择特性,从而无需使用外部选择器来抑制大阵列中的漏电流。这项工作为未来存储器层次结构的演进开辟了新的机会。
h(t) 可以理解为来自 SAW 最小值的 EL 信号。因此,自相关直方图可以看作是一系列等距函数 J(∆t)=(h∗hmirror)(∆t) 的总和。图 S4(a) 显示了 τ = 0.2 和 w = 0.05 的 h(t) 的示例,而图 S4(b) 显示了镜像 hmirror(t)。它们的卷积 J(∆t) 绘制在图 S4(c) 中。这个单峰可以理解为图 S3 中各个峰的实际形状,这意味着即使这些峰之间存在明显的重叠,也可以单独评估特定峰的贡献。因此,如果已知 SAW 驱动的 EL 的理论函数 J(∆t),就可以更准确地估计来自抑制峰的真实信号,例如图 3(a) 中的抑制峰。从图 3(b) 中平均直方图的拟合结果可以看出,每个峰的形状由 J (∆ t ) 确定,其中 τ = 99.6 ps,w = 33 ps,BG g2 = 2.79。可以假设图 3(a) 中的每个峰具有相同的形状,但由于统计样本方差,其峰幅度不同。这些在 ∆ t = ∆ t (i) 处的峰具有不同的幅度 A g2(i) ,其与 g (2) (∆ t (i) ) 成正比。反映方差的改进自相关函数可以表示为
其中 q =1.605x10 -19 是电子的单位电荷。我们可以看到,这个电位是光频率的线性函数。获取不同光频率下的值使得确定功函数成为可能。为了演示光电效应,应用了真空光电二极管。真空光电二极管(或真空光电管)是带有光敏阴极的真空二极管。图 1 显示了真空光电二极管的结构和基本测量装置。
重要通知 亲爱的客户, 2017 年 2 月 7 日,前 NXP 标准产品业务部门更名为 Nexperia 。Nexperia 是业界领先的分立器件、逻辑器件和 PowerMOS 半导体供应商,专注于汽车、工业、计算、消费和可穿戴应用市场。 在仍包含 NXP 或飞利浦半导体参考的数据表和应用说明中,请使用对 Nexperia 的参考,如下所示。 不要使用 http://www.nexperia.com、http://www.philips.com/ 或 http://www.semiconductors.philips.com/。 不要使用 sales.addresses@www.nxp.com 或 sales.addresses@www.semiconductors.philips.com,而要使用 salesaddresses@nexperia.com(电子邮件)。 根据版本,替换每页底部或文档其他位置的版权声明,如下所示: - © NXP N.V.(年份)。保留所有权利或 © Koninklijke Philips Electronics N.V. (年份)。保留所有权利 应替换为: - © Nexperia B.V. (年份)。保留所有权利 。如果您对数据表有任何疑问,请通过电子邮件或电话联系我们最近的销售办事处(详情请发送邮件至 salesaddresses@nexperia.com )。感谢您的合作和理解,
400 nm 至 800 nm。(实线)包括 CsI(Tl) 闪烁体的发射光谱以供比较。(虚线)(b)不同光活性层厚度的 OPD 在暗条件和 950 µW/cm 2 光照辐照度(波长 546 nm)下实验和拟合的电流密度 (J) 与电压 (V) 特性。当实线符号表示光响应时,空心符号表示测得的暗电流。实线是根据非理想二极管方程拟合的暗电流密度。虚线表示当分流电阻 R sh 为无穷大时的理想 JV 曲线。(c)对于具有不同活性层厚度的 OPD,暗电流密度 (J dark ) 测量图与内部电场的关系。(d)反向偏压为 1.5V 时具有 320 nm 厚度活性层的 OPD 的外部量子效率 (EQE)...... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36
发光二极管 (LED) 的需求不断增长,这受到多种应用类别的推动,包括显示器背光、通信、医疗服务、标牌和一般照明。LED 的构造与微电子有些相似,但 LED 中的功能要求、材料和接口使其故障模式和机制独一无二。本文全面回顾了 LED 故障机制和可靠性方面的行业和学术研究,以帮助 LED 开发商和最终产品制造商有效地集中资源。重点是 LED 在芯片和封装级别的可靠性。LED 制造商提供的可靠性信息还不够成熟,无法为大多数消费者和最终产品制造商所用。本文为了解整个供应链中 LED 的可靠性问题奠定了基础。我们介绍了 LED,并介绍了使用 LED 和 LED 应用的主要行业。接下来讨论与故障机制和可靠性相关的 LED 构造细节和制造步骤。然后,我们将 LED 故障分为十三个不同的组,与半导体、互连和封装可靠性问题有关。然后,我们确定故障原因与其相关机制之间的关系、热标准化问题以及 LED 技术和可靠性研究和开发的关键领域。� 2011 Elsevier Ltd. 保留所有权利。
当 V=0 时,' I ' 可以替换为 ' I s '。因此,可以从 ln( I s /T 2 ) 对 1/T 的图的 X 轴截距中提取理查森常数,其斜率是 BH 的函数。理查森图所需的 BH 和 IF 值是使用第 1 节中解释的步骤得出的。当 IF 和 BH 都与温度有关时,理查森图容易表现出非线性行为。由于 GeneSiC 二极管的 IF 和 BH 图几乎与温度无关(图 1),因此理查森图是完美的线性,如图 3 所示。提取的理查森常数为 138.2 A/cm 2 K 2 ,接近 4H-SiC 的理论值 146 A/cm 2 K 2 。提取的近理论理查森常数表明金属-半导体界面处 BH 的空间分布均匀。