摘要。癫痫是最常见的儿科慢性神经系统疾病,每 150 名 10 岁以下儿童中就有 1 名患有癫痫;癫痫发作控制不佳会不可逆转地破坏正常的大脑发育。本研究比较了使用静息态功能性磁共振成像 (rfMRI) 延迟数据训练的不同机器学习算法检测癫痫的能力。对 63 名癫痫患者和 259 名健康对照者进行了术前 rfMRI 和解剖 MRI 扫描。分析了癫痫和健康对照队列的延迟 z 分数的正态分布,以确定 36 个种子区域的重叠情况。在这些种子区域中,研究队列之间的重叠范围为 0.44-0.58。使用主成分分析从延迟 z 分数图中提取机器学习特征。使用这些特征训练了极端梯度提升 (XGBoost)、支持向量机 (SVM) 和随机森林算法。受试者工作特征曲线下面积 (AUC)、准确度、灵敏度、特异性和 F1 分数
MRI和术中电视学经常在串联中用于描绘癫痫手术中的癫痫组织以进行局灶性癫痫。在电视学上具有高电图的MRI病变和组织的切除,例如尖峰和高频振荡(80-500 Hz)导致更好的手术结局。但是,目前未知的MRI和电图标记方式是未知的。这项研究的目的是找到MRI病变与尖峰/高频振荡之间的空间关系。我们回顾性地包括33例儿科和成年病毒新皮质癫痫患者,他们接受了电视学诊断手术(14个女性,中位年龄= 13.4岁,范围= 0.6-47.0岁)。临时病变被浮出水面。我们使用单变量的线性回归来发现电极上的切除前尖峰/高频振荡速率与其与MRI病变的距离之间的相关性。我们测试了直线至MRI病变的中心和边缘,以及沿皮质表面的距离,以确定哪些距离最能反映出尖峰/高频振荡的发生。我们进行了主持人分析,以研究潜在的病理类型和病变体积对我们结果的影响。我们发现尖峰和高频振荡速率在空间上与MRI病变边缘相关。在局灶性皮质发育不良中,较高的波纹速率与较短的距离相同[F(1,570)= - 0.35,p <0.0001,η2= 0.05]。这提倡切除该组织。潜在的病理类型影响了尖峰/高频振荡速率与MRI病变之间的空间关系(P尖峰<0.0001,P波纹<0.0001),而病变体积没有(p Spikes = 0.64,P ripples = 0.89)。较高的尖峰速率与海绵体的病变边缘的距离短[F(1,64)= - 1.37,p <0.0001,η2= 0.22],局灶性皮质倍增倍数[F(1,570)= -0.25,p <0.25,p <0.0001,p <0.0001,p <0.0001,η2= 0.005] F(1,66)= - 0.18,p = 0.01,η2= 0.09]。相反,低级神经胶质瘤显示出正相关。电极远离病变,尖峰的速率越高[F(1,75)= 0.65,p <0.0001,η2= 0.37]和波纹[F(1,75)= 2.67,p <0.0001,η2= 0.22]。特定于某些病理类型的病理生理过程决定了MRI病变和电皮质学结果之间的空间关系。在我们的分析中,非肿瘤病变(局灶性皮质增生症SIAS和海绵体)似乎本质上会产生尖峰和高频振荡,尤其是在病变的边界。低度神经胶质瘤在周围组织中引起癫痫发作。该组织的切除是否会导致更好的预后。我们的结果表明,当解释术中电物质摄影时,应考虑潜在的病理类型。
然而,目前用于递送抗癫痫药物的纳米载体报道很少,且大多数是单靶向纳米载体,仍会产生副作用。近年来,微流控技术在许多生物医学领域发挥着重要作用。20 – 22 特别是微流控芯片可以很容易地合成尺寸均匀且小的纳米颗粒,23 – 26 为制备纳米药物提供了平台。在此,我们提出了一种双靶向纳米载体系统将拉莫三嗪 (LTG) 递送至患病神经元以治疗癫痫。LTG 是临床上的一线抗癫痫药物。4,27 然而,它在水中的溶解度低,容易在肝脏中代谢。因此,需要高剂量或重复给药才能达到治疗浓度,28,29 但可能会引起恶心、头痛、视力模糊、头晕和共济失调等副作用。为了优化 LTG 的药理作用并尽量减少其副作用,双靶向纳米载体系统具有两个组分:(i)D 型 T7 (D-T7) 肽,T7 肽的逆向序列,与转铁蛋白 (Tf) 受体(BBB 的主要成分)显示出高结合力,可有效引导药物输送到中枢神经系统 (CNS),30 – 35 被设计用于靶向 BBB。(ii)Tet1 肽,它可以特异性地与神经元表面高表达的鞘磷脂和神经节苷脂 (G T1b 受体) 结合。 36 – 39 尽管已有报道称 T7 肽、D-T7 肽和 Tet1 肽能够靶向各自的靶点,以及 T7 肽和 Tet1 肽的组合能够治疗阿尔茨海默病,但尚未尝试将 D-T7 肽和 Tet1 肽组合靶向中枢神经系统 (CNS)。D-T7 肽对 Tf 受体的结合力比 T7 肽更高,因此需要探索 D-T7 肽和 Tet1 肽组合靶向中枢神经系统的效果。32,33,38,39 我们在两步微流体芯片上合成了一种双靶向递送系统,该系统已被
目的:研究显示丘脑前核 (ANT) 的深部脑刺激 (DBS) 是治疗特定边缘系统癫痫患者的有效方法。然而,该适应症的最佳靶点和电极位置仍未确定。因此,本系统评价和荟萃分析的目的是量化所有已发表的 ANT DBS 系列中主动接触位置与结果之间的关联。方法:使用 PRISMA 标准进行文献检索,以确定所有报告 ANT 治疗癫痫的 DBS 主动接触位置和结果的研究。提取患者、疾病、治疗和结果数据进行统计分析。在一个共同的参考框架上分析了对 DBS 有反应者(定义为最后一次随访时癫痫发作减少 ≥ 50%)与无反应者的接触位置。计算了每组接触的质心(按临床反应加权)。结果 从 555 项筛选出来的研究中,共有 7 项研究(涉及 162 名患者)符合纳入标准并进行了分析。在整个队列中,癫痫平均持续时间为 23 年,DBS 前平均发作频率为每月 56 次。5 项研究(n = 62,占患者队列的 38%)采用直接定位植入 DBS 电极,4 项研究(n = 123,76%)采用经脑室电极轨迹植入。在平均 2.3 年的随访期内,56% 的患者被认为是反应者。与无反应者相比,反应者的主动接触位于前 1.6 毫米(95% CI 1.5-1.6 毫米,p < 0.001),且毗邻乳头丘脑束(MTT)。结论 准确定位 ANT 对 DBS 治疗癫痫的成功至关重要。这些发现表明,刺激 MTT 附近的 ANT 亚区可改善疗效。
有些人发现癫痫不会对他们的生活造成太大影响,尤其是如果他们的癫痫发作可以通过适合他们的治疗得到控制。对于其他人来说,癫痫可能会影响生活的不同方面,例如工作或家庭生活、生活方式、旅行和假期、休闲或社交生活。请访问 epilepsysociety.org.uk/work- employment-and-epilepsy epilepsysociety.org.uk/travel-and-holidays epilepsysociety.org.uk/sports-and-leisure 和 epilepsysociety.org.uk/wellbeing
癫痫是儿科人群中最常见的慢性神经系统疾病之一 (4)。与大多数儿科疾病不同的是,癫痫是一种慢性疾病,需要长期医疗护理甚至终身治疗。儿科癫痫科医生应谨慎治疗儿童和青少年的癫痫,因为这些时期对他们的认知发展和教育成就至关重要。众所周知,行为、认知和精神合并症在儿童癫痫中并不少见,在治疗过程中会引起极大关注 (5)。癫痫发作最近被分为局灶性、全身性和不明性 (6)。还有更多种类的癫痫综合征和不同类型的癫痫,其病因分为结构性、遗传性、感染性、代谢性、免疫性和不明性 (7)。癫痫发作非常有害,因为它们可能导致跌倒、创伤甚至死亡。癫痫发作不会自行停止(癫痫持续状态)会导致脑损伤,甚至导致永久性残疾。患者及其护理人员对癫痫发作非常恐惧,因为它不可预测。他们担心突然发生的癫痫发作。众所周知,癫痫发作存在风险
在临床实践中,视觉解释被广泛用作评估癫痫中PET/CT图像的主观方法。结果在很大程度上取决于诊断医生的经验;因此,该方法具有许多缺点,包括它是高度主观的,难以解释(4)。为了实现客观评估,脑内不对称指数(AI)测量方法使用同一患者正常侧的大脑区域作为评估另一侧的癫痫状态的参考。在大脑的癫痫和正常区域中绘制了相同大小,形状和面积的感兴趣的镜像区域(ROI),并计算其平均标准化吸收值(SUV)和AI值(5)。但是,AI方法在很大程度上取决于医生的诊断经验,并且可重复性差(5,6)。
摘要 一种用于区分健康、发作期和发作间期脑电图信号的自动检测系统在临床实践中具有重要意义。本文介绍了一种用于癫痫和癫痫发作检测的低复杂度三类分类 VLSI 系统。设计的系统包括基于离散小波变换 (DWT) 的特征提取模块、稀疏极限学习机 (SELM) 训练模块和多类分类器模块。在三级 DWT 中引入了 Daubechies 4 阶小波的提升结构,以节省电路面积并加快计算时间。SELM 是一种新型的机器学习算法,具有低硬件复杂度和高性能,用于片上训练。由于其分类精度高,因此首次设计了一对一的多类非线性 SELM。设计的系统在 FPGA 平台上实现,并使用公开的癫痫数据集进行评估。实验结果表明,设计的系统在低维特征向量下实现了高精度。关键词:低复杂度,分类,DWT,多类,SELM 分类:集成电路(存储器,逻辑,模拟,RF,传感器)
目的 丘脑前核 (ATN) 是深部脑刺激 (DBS) 治疗药物难治性癫痫的常见靶点。然而,尚未明确确定 ATN 内基于图谱的最佳 DBS (主动接触) 靶点。本项回顾性研究的目的是分析主动接触位置与癫痫发作减少之间的关系,以建立基于图谱的 ATN DBS 最佳靶点。方法 在 2016 年至 2018 年期间接受 ATN DBS 手术治疗药物难治性癫痫的 25 名患者中,那些接受 1 年以上随访评估的患者有资格纳入研究。在初始 6 个月的刺激期后,患者被分为对治疗有反应 (癫痫发作频率中位数减少≥ 50%) 或无反应 (癫痫发作频率中位数减少< 50%)。对于无反应的患者,调整刺激参数和/或主动接触位置,并监测他们的反应性至少 1 年。将术后 CT 扫描与术前 MRI 图像进行非线性配准,以确定蒙特利尔神经学研究所 (MNI) 152 空间中所有主动接触的中心坐标和基于图谱的解剖定位。结果 19 例难治性癫痫患者在植入针对 ATN 的双侧 DBS 电极后接受了至少一年的随访。位于 ATN 体积前半部分重心(定义为前中心 (AC))附近的主动接触与不在此位置的接触相比具有更大的癫痫发作减少率。有趣的是,最初无反应的患者在最后的术后随访中通过将主动接触调整到更靠近 AC 的位置,最终可以大大减少癫痫发作。结论 接受针对 AC 的刺激的患者可能具有有利的癫痫发作减少率。此外,作者在最初无反应的患者中重新定位电极后获得了额外的良好结果。针对该最佳区域进行有目的的战略性轨迹规划可能会预测 ATN DBS 的良好结果。
