摘要。本文提出了一种经济高效的工艺流程设计与开发,用于研究 GaN 微管的挠曲电性能,微管直径为 2 - 5 μm,微管壁厚为 50 nm。研究了设计以及电化学蚀刻参数(施加电压、阳极氧化持续时间)对获得的通道尺寸的影响。所提出的技术路线意味着在高蚀刻速率下在环保电解质中对 n-InP 半导体晶体进行电化学蚀刻。通过实验优化了工艺流程。建议引入一个垂直通道,微管将放置在该通道中,以便在测量过程中在平台上达到更高的稳定性。
Colors available on Collette series: Silica 09122386 Alloy 09122430 Burnished 09122452 Cumulus 09122463 Dewpoint 09122496 Ginger 09122518 Haze 09122573 Quartz 09126511 Canyon 09126599 Sands 09143385 Lotus 09143341 Flax 09143308 Chrome 09143429 Shale 09551782 Mineral 09551793 Putty 09551815 Nickel Silica Etch 09157784 Almond 09157795 Barley 09157872 Doe 09157894 Flint 09158048 Wistful Silica Leather 09141438 Almond 09141460 Barley 09141493 Dove 09141515 Dune 09141592 Lichen Silica Tech 09127941 Fog 09127919 Macadamia 09127930 Mineralize 09127941 Paloma 09127963 Sandstone 09127985 Verdigris 09143550 Ash Silica Triad 9203005 Setter 09203016青铜09203027 Brut 09203038 Luster 09203049 Stark 09203060 Ivory 09203071隐藏0920303082 HOVER 09203033 9509179 Pebble 9509047 PUTTY 9509146 MOONSTONE 9509058 ELM 9509025 HICKORY SILICA BLEND 9508475杏仁9508673 Diamond 9508651 Nickel 9508662 Platinum 9508486 Sandstone 9508640 Dove
引入清洁室的每种材料都是空气传播分子污染(AMC)的潜在来源。材料的化学成分,其表面积,其热行为和温度最终通过特定组件确定了引入洁净室环境中的污染水平。那些在关键过程成分上凝结的污染物可能会导致“ AMC缺陷”,例如晶片,不受控制的硼和磷掺杂,蚀刻速率变化,阈值电压移位,晶片和丙键率偏移和高接触率和高接触电阻的变化。随着微电子设备的线路宽度缩小了“ AMC缺陷”已成为一个主要问题,需要在洁净室的设计中考虑。
红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
茎特征:茎样品是通过直接转移方法制备的。首先,将TEM网格(Quantifoil Cu网格)直接放在带有MOTE 2丝带的SIO 2基板上。然后将液压(3μL)的KOH溶液(25%)滴在TEM网格的边缘,并扩散到该网格的底面,以蚀刻SIO 2层。之后,将带有TEM网格的SIO 2基材滴入DI水中以去除KOH残留物。最后,将TEM网格用镊子夹住,并放在滤纸上干燥。茎图像是在配备了高级茎校正器(ASCOR)探针校正器的一个像差校正的JEOL ARM-200F上进行的,该探针校正器以80 kV的加速电压运行。
他还参与了大学“半导体技术”技术讲座的授课,参加了研讨会和相关的外部活动,并受邀在欧洲核技术与电离辐射高级研究学院 (Collegio Ghislieri Pavia) 担任半导体加工等离子蚀刻工艺讲师数年,从 2021-2022 学年第二学期开始,他将受邀在卡塔尼亚大学化学硕士学位课程“纳米结构制造的化学物理方法”课程中担任教授。从 2022 年开始,他还将担任卡塔尼亚大学化学学位课程指导委员会的 ST 参考。他拥有 10 项专利和 26 篇国际出版物。
alpes,ltm,Grenoble F-38054,法国 * erwine.pargon@cea.fr,Univ。Grenoble Alpes,CNRS,LTM,17 Rue des Mardyrs,38054 Cedex 09法国Grenoble,法国摘要摘要本研究提出了通过在上衣的室内饮用量的策略,该策略通过与上衣相结合的室友eTch fat Chip Chore to Chore Choh toper fore the toper the toper fore the notch facking Koh weats face face face the the gan支柱。的确,KOH溶液中的gan蚀刻是一个各向异性过程,这意味着它允许在宏观尺度上出现稳定的面,而原子过程(例如踩踏)驱动湿蚀刻的基本机制在微观尺度上驱动湿蚀刻的基本机制。我们的研究强调了形状(圆形或六角形,与M平板或A平板对齐)的关键作用,以及硬面膜在确定所得的结晶刻面形成及其相关的粗糙度方面的粗糙度。此外,它强调了等离子体图案后的GAN支柱剖面(重入,直,锥形)的重要性,因为它们会强烈影响随后的湿蚀刻机制。最终,该文章证明,可以通过在等离子蚀刻后在略微倾斜的GAN曲线上使用室温湿KOH(44 wt%)来实现平滑的M型面,并结合使用六边形M的Masks。
光盘利用激光在光盘表面蚀刻出凸起(凹坑)。然后另一束激光能够读取这些凹坑以及与未蚀刻数据位相对应的凸起,并将它们读取为二进制字符串。凹坑为 0,凸起为 1。它们是一种非常便宜、轻便的数据存储方式,但容易因刮擦而损坏。它们的存储容量也有限,CD 最多可存储 800 MB,蓝光最多可存储 50 GB。另一个缺点是需要专门的硬件来读取和写入光盘,而且大多数光盘无法重写。云存储云存储是一种云计算模型,其中数据存储在通过互联网或“云”访问的远程服务器上。
图 1:灰度 t-SPL 与干法蚀刻的组合。电介质中灰度纳米图案放大工艺流程的横截面说明。(a)在薄电介质膜(在我们的例子中为 SiO 2 或 Si 3 N 4 )上旋涂热敏抗蚀剂 PPA。(b)使用加热的纳米尖端在薄 PPA 层上制造二元和灰度纳米结构(有关纳米尖端的详细信息,请参阅补充图 S2)。(c)将纳米结构从 PPA 转移到 SiO 2 或 Si 3 N 4 。(d)通过深度放大将写入 PPA 中的纳米结构完全转移到电介质膜中。垂直峰峰深度放大(∆ z 电介质/∆ z 抗蚀剂)是由 CHF 3 /SF 6 等离子体中抗蚀剂和基板之间的蚀刻速率差异造成的。图像未按比例绘制。