关键词:光刻热点、GaAs 蚀刻、SiN 沉积、工艺集成 摘要 光刻技术能否持续对精细几何图形进行图案化,主要挑战之一是整个晶圆和加工场内的最佳焦点存在差异。晶圆图案化侧的这些差异通常是可以理解的,可以很好地表征,并且在选择和优化焦点设置时可以进行校正。然而,晶圆背面的意外和变化的畸形会影响曝光过程中的场平衡(由于基板高度差异而导致的焦点偏移)。这会导致存在污染的地方图案分辨率较差。这些缺陷通常被称为“热点”。在本研究中,研究并表征了一种具有可重复双重像差的故障模式。结果表明,由于一种由 Si x N y 沉积和 GaAs 湿法蚀刻组成的新型集成缺陷模式,形成了意想不到的背面台面。然后,这些台面在金属互连光刻过程中产生热点,导致产量损失 1% 或更多。本研究证明了检测、表征和最小化图案化畸变对于持续改进器件、提高产量和降低化合物半导体制造成本的重要性。引言光刻是半导体行业中不可或缺的技术,是蚀刻、沉积和离子注入的前身[1-4]。保持正确且一致的聚焦和剂量控制对于确保侧壁角度和特征尺寸以满足器件功能和可靠性需求至关重要[2]。因此,先进的光刻技术对于实现器件性能和提高半导体行业的芯片产量至关重要[5]。使用浸没式光刻、双重或多重图案化、分辨率增强技术等创新方法,可以在阿贝衍射极限的几分之一处对器件特征进行图案化[1,6-8]。除了实现更密集的图案化和更小的特征尺寸外,稳健的光刻部署还面临着许多实际挑战[5,9-11]。其中一个挑战是
在大多数湿法蚀刻、CMP、电镀和其他晶圆清洗操作中,晶圆上暴露于湿法化学处理步骤的区域是由光刻掩模操作定义的非常特殊的区域。因此,在评估湿法化学工艺的复杂性和挑战性时,必须考虑所制造集成电路特征的尺寸和几何复杂性。虽然半导体通常由直径一般为 200 毫米或 300 毫米、厚度约为 800 微米的晶体硅晶圆制成,但单个集成电路器件结构通常具有以纳米为单位的关键尺寸,因此属于分子尺度。器件特征(而非整个晶圆)的尺寸和材料复杂性对湿法化学处理提出了挑战。
工具:RO1200材料与许多工具系统兼容。选择是否使用圆形或开槽的引脚,外部或内部固定,标准或中心线(多行)工具,以及pre ded pred vs.后冲孔将取决于电路设施的功能和偏好以及最终的注册要求。一般而言,开槽的销钉,中心线工具格式和后口气的打孔将满足大多数需求。无论采用哪种方法,都可以在工具孔周围保留铜。一般而言,建议只有在使用36或72微米铜箔的加工芯上,只有在加工芯上涂抹芯时,建议使用18微米铜箔在核心两侧的工具孔周围保持铜。
在当前的MSC论文中,使用具有Cl 2 /ar +过程的常规RIE和具有相同蚀刻化学的新开发的啤酒对Si(100)中的辐射损伤进行了比较研究。然后通过开尔文力探针显微镜(KFPM)测量接触电势差(CPD)分析的表面损伤。这些实验的结果表明,由于CPD的值和蚀刻表面的工作函数远低于ALE样品的值,因此RIE过程造成的损害很高。根据接近原始Si的CPD值,啤酒过程显示在蚀刻的Si样品上几乎最小损伤形成(100)。最后,该项目为与本研究所使用的不同条件下进一步研究啤酒损害打开了大门,因为它对纳米制作和半导体行业的重要性。
3D NAND垂直堆栈缩放缩放量主要是在膜沉积和蚀刻方面引起的挑战,这与设备通过功能尺寸减小进行缩放不同。与图案,隔离并连接垂直集成的3D存储器设备,需要难以高纵横比(HAR)蚀刻。通常将孔或沟槽的纵横比定义为深度与孔或沟槽宽度的比率。3D NAND制造中的关键过程包括替代堆栈膜沉积,高纵横比蚀刻和文字线金属化。找到位密度,读写速度,功率,可靠性和成本之间的平衡对于应用至关重要。当我们在结构中添加更多层,并且还有额外的资本支出,随着层的数量增加,增加更多的存储容量变得越来越昂贵。
作为纳米加工的主要工艺,DUV 光刻通常需要在光刻胶配方、溶剂和显影剂中使用大量有毒化学品。在此背景下,提出了替代当前石油衍生光刻胶的化学品,以减少对环境的影响。壳聚糖是一种生物源光刻胶,通过用绿色溶剂(去离子 (DI) 水)替代,可实现不含有机溶剂和碱性显影剂的水基图案化工艺。本文介绍了使用壳聚糖基光刻胶进行图案化集成的最后一个分步过程。使用 CEA-Leti 的 300 毫米中试线规模的初步结果显示,图案分辨率低至 800 nm,同时等离子蚀刻转移到 Si 基板中。最后,通过生命周期分析 (LCA) 对基于壳聚糖光刻胶的整个工艺的环境影响进行了评估,并将其与传统的基于溶剂的工艺进行了比较。关键词:光刻、光刻胶、生物源、壳聚糖、水基、半导体、可持续性、LCA
光子生物传感器的制造是在 200 毫米绝缘体上硅技术平台上实现的。虽然光子生物传感器是从晶圆顶部构造的,但微流体通道是通过背面释放工艺局部引入的,该工艺结合了干湿蚀刻。对于 760 µ m 厚的硅基板的局部背面蚀刻,采用了深反应离子蚀刻 (DRIE) 工艺和硬掩模,二氧化硅与硅的选择性非常高(SiO2:Si 选择性为 1:200)。这保证了对埋层氧化物 (BOX) 的严格控制。我们选择了 RIE 和湿蚀刻的组合来去除 BOX,因为如果仅使用 RIE,波导结构可能会受损。纯化学湿蚀刻的缺点是由于 BOX 的蚀刻速率低,工艺时间延长。图 1 a 显示了制造的光子传感器芯片。可以在其他地方找到制造过程的全面描述。7 – 9
可以使用自下而上的工艺完全避开蚀刻损伤的关注点。选择性面积生长(SAG)的过程将vias涂到掩模层上的基板上,然后将图案化的底物加载以进行生长。调整生长条件,使外观仅发生在定义的开口内。这会导致纳米(微)结构的生长,其尺寸和形状与底物5,6时所定义的尺寸和形状完全匹配。此外,这些纳米结构不需要暴露于任何干蚀刻过程以定义装置台面,从而防止形成与该过程相关的表面缺陷。这些优势对于任何(子)微米级设备的高效效率是必要的。纳米结构也可以在非本地基材上生长,有可能打开更多新应用7。此外,
* 通讯作者:moises.garin@uvic.cat 我们报告了一种通过在纳米颗粒/基底界面的弯月面中毛细管冷凝在纳米尺度上局部输送气相化学蚀刻剂的方法。该过程简单、可扩展且不需要对纳米颗粒进行功能化。此外,它不依赖于材料的任何特定化学性质,除了溶液是水性的和所涉及表面的润湿性之外,这应该使其能够应用于其他材料和化学品组合。具体而言,在这项工作中,我们通过使用暴露于 HF 蒸汽的自组装单层聚苯乙烯颗粒定期对 SiO 2 层进行图案化来演示所提出的工艺。然后使用图案化的 SiO 2 层作为掩模来蚀刻 Si 中的倒置纳米金字塔图案。已经证明了硅纳米图案化适用于从 800 nm 到 100 nm 的颗粒尺寸,对于 100 nm 纳米颗粒,实现了尺寸小至 50 nm 的金字塔。