https://doi.org/10.26434/chemrxiv-2024-b3m60 orcid:https://orcid.org/0009-0005-4780-8060 Chemrxiv不同行评论的内容。许可证:CC BY-NC 4.0
现代服务器工作负载具有较大的代码占用空间,由于指令缓存容量未命中,这些代码很容易出现前端瓶颈。即使现代处理器中实现了积极的提取定向指令预取 (FDIP),由于 I-Cache 未命中,仍然会出现严重的前端停顿。FDIP 可以容忍 BPU 预测路径上发生的大部分未命中,而不会导致停顿。然而,先前的指令预取工作并非设计用于 FDIP 处理器。它们的唯一目标是减少 I-Cache 未命中,而 FDIP 处理器则旨在容忍它们。设计与 FDIP 协同工作的指令预取器需要确定影响前端性能的缓存未命中比例(未被 FDIP 完全隐藏),并仅针对它们。在本文中,我们提出了优先级定向指令预取 (PDIP),这是一种新颖的指令预取技术,它通过仅针对 FDIP 遇到困难的目标发出预取来补充 FDIP——沿着导致前端停顿事件的重新引导路径。PDIP 识别这些目标并将它们与未来预取的触发器相关联。在 43.5KB 的预算下,PDIP 在重要的工作负载(例如 Cassandra)上实现了高达 5.1% 的 IPC 加速,并在 16 个基准测试中实现了 3.2% 的几何平均 IPC 加速。
抽象背景:脑瘫(CP)对儿童健康产生了重大负担,痉挛性类型是最普遍的表现。这种神经系统疾病影响每1000个出生2-3个,源于各种产前,围产期或产后脑损伤。通常影响的结局指标包括肌肉张力,疼痛和运动范围,分别通过修改后的Ashworth量表,Wong-Baker的面部疼痛评级量表和Popliteal角度测量评估。虽然保守的静态拉伸是一种广泛使用的痉挛治疗选择,但由于暂时的效果,其功效仍然尚无定论。相反,由Harman Kabat和Margaret Knott在1940年代引入的本体感受性神经肌肉促进(PNF)伸展运动,在改善功能结果和减少诸如中风和CP(例如中风和CP)神经系统条件下的痉挛方面表现出了希望。然而,有限的证据证明了其比较疗效与常规静态拉伸有关减少痉挛性脑瘫儿童的痉挛性的证据。因此,本研究旨在将PNF拉伸和静态拉伸的有效性比较降低痉挛性脑性麻痹儿童的下肢痉挛,疼痛和popliteal角度为次要目标。
红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
摘要:阐明电荷序列对聚电解质构象的影响对于理解许多生物物理过程并推进序列定义的聚合物材料的设计很重要。可以使用多肽研究这种作用,该效应允许与精确的单体序列合成聚合物链。在这里,我们使用单分子力实验来探索电荷间距对多肽构象的影响。我们测试了由亲水性且无带电或负电荷的单体组成的多肽序列。我们发现链持续长度对净电荷和离子强度不敏感。随着溶液的增加离子强度,我们观察到溶剂质量的良好到表面的转变,其theta点随电荷间距而缩放。因此,我们的结果揭示了静电驱动的排除体积效应和不敏感的局部构象柔韧性之间的复杂相互作用,我们认为这与带电组在侧链上的位置有关。■引入生物聚合物,例如核酸和蛋白质,将它们的结构和功能直接编码到其序列中。这激发了序列定义的聚合物材料的设计,其工程结构和功能复杂性接近自然界中的序列和功能复杂性。1-4此类材料的从头设计需要对单体序列如何影响聚合物的结构和结构的基本理解。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。具体而言,已经广泛探索了聚电解质中的静电效应,因为它们可以驱动结构形成以及与环境中其他分子的相互作用。调节聚电解质的电荷序列已显示出显着改变其构象行为5-7以及在许多生物物理过程中的活性。10,11
心脏导管插入术:一种检查您的心脏工作状况的过程。也是要找出您是否患有心肌,瓣膜或心脏(冠状动脉)动脉疾病。在此测试中,医生的长管(导管)放入了手臂或腿部的血管中。,它借助一台特殊的X射线机将引导到您的心脏。医生使用对比染料,通过导管将其注入您的血管中,以制作X射线视频,X射线视频,冠状动脉和心脏腔室。
摘要虽然众所周知,机械动力学在神经发生或神经变性等关键过程的神经分化中具有影响力,但对神经干细胞疗法的研究通常集中在生化相互作用上,而不是机械方面,而不是机械方面,通常会导致低效性和无法满足的潜力。因此,当前的研究试图使用常规的二维(2D)平面底物来阐明机械刺激对神经性能的影响。然而,这些2D底物无法捕获体内神经干细胞环境的定义三维(3D)特征。为了填补这一研究差距,我们使用长链聚乙烯糖二丙烯酸酯(PEGDA)和明胶 - 乙糖酰基酰基(Gelma)合成了一系列软弹性3D水凝胶,以模仿3D细胞培养的神经组织机械环境。通过改变聚合物的浓度,我们获得了低至10 kPa的拉伸模量和低至0.8 kPa的压力模量的生物塑料水凝胶。体外结果表明,Gelma-PEGDA水凝胶具有支持神经细胞生长,增殖和分化以及神经突生长所需的高生物相容性。然后,我们研究了机械拉伸对神经细胞行为的影响,并观察到机械拉伸可以显着增强神经突的延伸和轴突伸长。另外,神经突在拉伸方向上更方向定向。免疫细胞化学和相对基因表达数据还表明,机械张力可以上调神经分化蛋白和基因的表达,包括GFAP和βIII-微管蛋白。总体而言,这项研究表明,除了改善了对特定谱系神经分化的凝胶-PEGDA的特定机械性能外,水凝胶拉伸还成为改善神经干细胞疗法治疗结果的潜在诱人策略。
参考文献:Van de Sompel Phaedra、Khalilov Umedjon、Neyts Erik。- 对比等离子体辅助碳纳米管成核中的 H 蚀刻和 OH 蚀刻 物理化学杂志:C:纳米材料和界面 - ISSN 1932-7447 - 125:14(2021),第 7849-7855 页 全文(出版商 DOI):https://doi.org/10.1021/ACS.JPCC.0C11166 引用此参考:https://hdl.handle.net/10067/1783930151162165141
摘要 - 背面照明(BSI)3D堆叠的CMOS图像传感器对于包括光检测和范围(LIDAR)在内的各种应用中引起了重大兴趣。这些设备的3D集成中的重要挑战之一涉及单个光子雪崩二极管(SPAD)晶圆的良好控制的背面稀疏,后者堆叠着CMOS WAFERS。背面晶圆稀疏通常是通过硅的回培养和掺杂敏感的湿化学蚀刻的组合来完成的。在这项研究中,我们开发了一种基于量身定制的HF:HNO 3:CH 3 COOH(HNA)化学的湿蚀刻过程,能够在P+/P硅过渡层中实现蚀刻层,具有高掺杂级别的选择性(> 90:1)。在300毫米晶片中证明了〜300 nm的极佳总厚度变化的可行性。此外,还表征了包括染色和表面粗糙度在内的HNA蚀刻硅表面的众所周知的特性。最后,提出了一种湿的化学尖端方法来减少表面粗糙度。
内存预取是一种性能优化技术,广泛应用于现代计算机系统的多个硬件和软件层。预取主动将数据从较慢的内存层带到较快的内存层,以预测其未来的用途。尽管对预取进行了充分研究,但仍在不断探索,尤其是随着新兴的内存层次结构包含异构性 [ 22 ]、分解 [ 27 ]、垂直 / 水平分层 [31] 和内存计算 [48]。早期的预取器针对易于捕获的模式(如步幅),并且足以满足易于理解的应用程序(如 SPEC 中的应用程序)的需求 [ 4 ]。然而,当今的系统和应用程序要复杂得多,动态性更强,简单的方法变得无效。人们对开发能够通过学习内存访问模式而不是检测预编程规则来适应动态执行的预取器的兴趣日益浓厚 [11, 18, 40]。最近的研究已经开始探索深度学习 (DL) 用于预取的可行性 [ 11 , 18 , 30 , 40 ]。理论上,DL 应该可以改善预取,因为它本质上是数据驱动的,并且应该自然地适应应用程序及其环境。事实上,这些研究表明,在理想的模拟中,DL 在准确性方面优于非学习预取方法。然而,所有这些方法都有三个主要缺点,阻碍了它们在现实世界中的应用。