hile在非小细胞肺癌(NSCLC)中大多数表皮生长因子受体(EGFR)驱动突变对用靶向酪氨酸激酶抑制剂(TKI)(TKIS)的治疗敏感,抗EGFR TKIS易于通过二次突变且具有效率的非c级突变的抗性机制敏感。egfr外显子20插入代表了NSCLC的具有挑战性的分子亚型,没有批准的靶向治疗选择和整体预后不良。类似地,对于具有对TKI敏感的EGFR突变的NSCLC,在第三代TKI上进展后,没有批准的靶向疗法,而没有其他可操作的突变。amivantamab是一种新型的,完全人类的双特异性抗EGFR/C-MET抗体,具有临床功效和有利的毒性,对TKI耐药性的发展后,对预处理的EGFR EXON 20插入NSCLC和经典EGFR突变。第一阶段的Chrysalis研究中的初步发现报告了40%的客观反应率,基于铂基化学治疗后,预处理EGFR外显子20插入突变肿瘤的患者的反应持续时间为11.1个月。 基于这些结果,美国食品药品监督管理局在2021年批准了Amivantamab的批准,用于治疗成年患者,其局部晚期或转移性NSCLC具有EGFR Exon 20插入突变,其疾病在基于铂的化学疗法后或之后在疾病方面已进展。 这篇综述概述了双靶向抗体的合理设计和新颖的作用机理,并描述了临床前和临床数据表征了Amivantamab在NSCLC治疗中。第一阶段的Chrysalis研究中的初步发现报告了40%的客观反应率,基于铂基化学治疗后,预处理EGFR外显子20插入突变肿瘤的患者的反应持续时间为11.1个月。基于这些结果,美国食品药品监督管理局在2021年批准了Amivantamab的批准,用于治疗成年患者,其局部晚期或转移性NSCLC具有EGFR Exon 20插入突变,其疾病在基于铂的化学疗法后或之后在疾病方面已进展。这篇综述概述了双靶向抗体的合理设计和新颖的作用机理,并描述了临床前和临床数据表征了Amivantamab在NSCLC治疗中。此外,我们概述了这种新药物的实际临床给药,包括毒性的给药和管理,并将其机制,功效和安全性与当前可用且正在研究的其他EGFR Exon 20插入靶向疗法的机制,功效和安全性进行比较。
结直肠癌 (CRC) 是全球癌症相关死亡的第三大常见原因,每年有近 100 万人死于该病 (1)。大约一半的转移性 CRC 携带 KRAS(Kirsten 大鼠肉瘤病毒致癌基因同源物)激活突变,导致 GTP 结合活性形式和 GDP 结合非活性形式之间的稳态平衡被破坏。RAS 活性形式的持续存在与上游 RTK 的影响完全脱节,导致主要涉及细胞增殖和迁移过程的几种下游通路过度激活 (2,3)。因此,以 RTK 为靶点的药物(如抗表皮生长因子受体 (EGFR) 单克隆抗体 (moAb))无效。外显子 2 上的密码子 12 和 13 以及外显子 3 上的密码子 61 是最常见的 KRAS 突变位点,而外显子 4 上的密码子 117 和 146 以及其他 RAS 家族成员 HRAS 和 NRAS 上的突变则非常罕见(4-7)。对转移性 CRC 患者中 KRAS 突变的临床影响的理解始于外显子 2 突变被确定为对西妥昔单抗和帕尼单抗等抗 EGFR 单抗反应的负面预测因子(8、9)。然后,对 KRAS 的扩展评估
在此观点强调的文章中,Semenkovich等人对ctDNA利用的各种来源,实验室技术,临床应用和Challenges进行了全面综述。目前,当没有足够的组织可用于分析时,ctDNA测试越来越多地用于临床实践中,有足够的效用来进行基因分型。例如,批准CTDNA血液基于EGFR突变的批准,以鉴定有资格获得EGFR指导的靶向疗法的患者。Food and Drug Admin- istration subsequently granted approval for two ctDNA platforms (Guardant360 CDx and FoundationOne Liquid CDx) to detect genomic alterations in multiple solid tumor types to identify targetable tumor muta- tions which now include KRAS , BRAF , EGFR exon 20, MET exon 14, and KRAS G12C in non-small cell lung cancer and BRCA 1/2 in ovarian cancer among others.然而,在临床应用中,在癌症筛查,MRD评估和监测以及治疗反应监测之前仍有许多工作要做。在这里,我们概述了这些技术的临床挑战和下一步,以改善整个癌症连续体的患者结果(图1)。
摘要:Duchenne肌肉营养不良(DMD)是当前无法治愈的X连锁神经肌肉疾病,其特征是进行性肌肉浪费和早亡,通常是由于心脏衰竭而导致的。肌营养不良蛋白基因中引起DMD的突变是高度多样的,这意味着,可以普遍适用的治疗所有患者的疗法的发展非常具有挑战性。DMD的领先治疗策略是反义寡核苷酸介导的剪接调节,从而将一个或多个特定的外显子排除在成熟的肌营养不良蛋白mRNA之外,以纠正翻译阅读框。的确,三个外显子跳过寡核苷酸已获得FDA批准用于DMD患者。第二代外显子跳过药物(即肽 - 抗乙二理I寡核苷酸共轭物)表现出增强的效力,并且在心脏中诱导肌营养不良蛋白的恢复。同样,针对各种外显子的多种其他反义寡核苷酸药物正在临床发育中,以治疗更大比例的DMD患者突变。在基因组工程领域的相对最新进展(具体而言,CRISPR/CAS系统的发展)为DMD的RNA指导遗传校正提供了多种有希望的治疗方法或基础编辑技术。肾脏毒性,病毒载体免疫原性和脱靶基因编辑)以及高成本的治疗成本。对剪接调制和基因编辑方法的临床翻译的潜在局限性,包括药物输送,均匀肌营养不良蛋白表达在校正的肌纤维中的重要性,安全问题(例如
一个令人兴奋的领域是“外显子跳跃疗法”的发展。在我们的细胞中,基因被复制到 RNA 配方中,告诉细胞如何制造特定的蛋白质。这些 RNA 配方由称为“外显子”的构建块组成,它们有点像配方中的单独句子。基因拼写错误通常发生在特定的外显子中。如果可以移除(跳过)包含此拼写错误的外显子而不会扰乱整个蛋白质配方,那么会丢失一小部分蛋白质(由跳过的外显子提供的配方部分),但大多数蛋白质仍会以正常方式产生。最终会得到一种大小接近正常但缺少一小部分的蛋白质。正如 Oates 所说:“对于许多疾病来说,这比因拼写错误而导致蛋白质几乎不产生或完全不产生蛋白质要好得多。”
平台由与转铁蛋白受体 1 结合的抗原结合片段组成,该片段与寡核苷酸偶联。我们证明,单剂量的小鼠特异性 FORCE–M23D 偶联物可增强 mdx 小鼠中外显子跳跃 PMO (M23D) 的肌肉递送,实现剂量依赖性和稳健的外显子跳跃以及持久的肌营养不良蛋白恢复。FORCE–M23D 诱导的肌营养不良蛋白表达在单剂量 30 mg/kg PMO 等效剂量下分别达到股四头肌、胫骨前肌、腓肠肌、膈肌和心脏中野生型水平的 51%、72%、62%、90% 和 77% 的峰值。缩短的肌营养不良蛋白定位于肌膜,表明功能性蛋白质的表达。相反,单剂量 30 mg/kg 未结合 M23D 显示出较差的肌肉传递,导致外显子跳跃和肌营养不良蛋白表达处于边缘水平。重要的是,与 FORCE-M23D 相比,FORCE-M23D 治疗可改善功能结果
Vectibix 与 sotorasib 联用,适用于治疗经 FDA 批准的检测确定为 KRAS G12C 突变的 mCRC 成人患者,这些患者之前曾接受过以氟嘧啶、奥沙利铂和伊立替康为基础的化疗[见剂量和给药方法(2.1)和临床研究(14.4)]。使用限制:Vectibix 不适用于治疗 RAS 突变的 mCRC 患者,除非与 sotorasib 联用治疗 KRAS G12C 突变的 mCRC。Vectibix 不适用于治疗 RAS 突变状态未知的 mCRC 患者[见剂量和给药方法(2.1)、警告和注意事项(5.2)、临床药理学(12.1)和临床研究(14.3)]。 2 剂量和给药 2.1 患者选择 RAS 野生型 mCRC 在开始使用 Vectibix 单一疗法治疗之前,评估结直肠肿瘤中的 RAS 突变状态,并确认 KRAS 和 NRAS 的外显子 2(密码子 12 和 13)、外显子 3(密码子 59 和 61)和外显子 4(密码子 117 和 146)中均不存在 RAS 突变。
由Stephen Hunger及其同事在1994年进行的研究2,并进一步定义了两个主要的TCF3 :: HLF Fusion断点,这些断点现在已知与Hi-gly特征性临床表现有关B-all的致命形式(图1)。1型重排会导致TCF3的外显子13和HLF外显子4之间的易位,并与严重的散布性血管内凝血表型有关。2型重新排列会导致TCF3的外显子12和HLF外显子4之间的易位,并诱导严重的高钙血症。这些现象的确切机制仍然没有完全阐明。这种临床表现在其他B-All亚型中是极为不寻常的,并提供了有关通过细胞分子测定法检测的潜在令人担忧的Leuke-Leuke-Leuke-MIA相关遗传改变的重要早期线索。不管特定的T(17; 19)断点和独特的临床表型,TCF3 :: HLF B-的患者对Che-Mathape的初步反应较差,并且/或经历早期复发(通常是两年的诊断),这些诊断是无法进行的,这些诊断是无法进行的,这些诊断是无法进行的,可以与强化的化学疗法和同种疗法(均可替代)。重新任务。TCF3 :: HLF B-ALL中的化学抗性部分归因于P-糖蛋白表达和ABC多药耐药转运蛋白的上调,以及RAS,BCL-2和其他促卵巢途径的上调。基于基因表达的最新临床前研究
引入编码电压门控钠(Na V)通道的基因中的致病变异在患有早发作,发育和癫痫性脑病(DEE)的个体中经常发现,以及相关的神经发育障碍(NDDS)(NDDS)(1,2)。确定Na V通道变体的功能后果可以提供有关病理生理机制的信息,并可能指导精确的治疗方法(3,4)。使用正确的分子环境(例如,物种起源,剪接同工型)来研究离子通道变体的功能,对于准确的评估至关重要。编码Na V 1.6的SCN8A中的致病变异已成为神经衰变疾病的重要原因,在婴儿期间典型发作(5)。最早发现的DEE与具有功能获得性能的非截断变体(例如增强的持续电流,激活的电压依赖性改变)。随后,在患有临床严重程度较大的表情的个体中发现了SCN8A变体,而没有癫痫发作(6)。在成熟的神经元中,Na V 1.6位于轴突初始段,该通道用于发起动作电位(7)。基因在早期发育过程中经历了特定的替代剪接事件,包括框架内包含2个不同版本的外显子5中的1个,该版本编码了第一个电压 - 感应域的一部分(8)。重要的是,国家生物技术信息中心(NCBI)指定为变体1(NM_014191)的SCN8A参考编码顺序(NM_014191)包括外显子5N,而包括外显子5A的序列为外显子5N在胚胎发育期间和出生后立即占主导地位,但大约1岁的转录本包含替代外显子5A超过含有5N的外显子,并且5A同工型在春季春季占主导地位(9)。