2020 年,全球新诊断的胃肠道 (GI) 癌症(包括食管癌、胃癌、胆管癌、胰腺癌、结直肠癌和肛门癌)达 510 万例,癌症相关死亡人数达 360 万例 [1]。在新辅助、辅助和姑息治疗阶段,细胞毒性化疗一直是 GI 癌症全身治疗的主要手段。除了微卫星稳定的结直肠癌和胰腺癌外,几种 GI 癌症治疗方法的最新进展促使人们使用免疫疗法刺激先天免疫系统来靶向癌细胞 [2]。精准医疗方法也推动了 GI 癌症的治疗,针对基因型定义的患者亚群提供靶向治疗,其中最热门的是人表皮生长因子受体 2 (HER-2)。这越来越多地被视为与肿瘤无关的靶点。 HER-2 是一种受体酪氨酸激酶 (RTK) 跨膜蛋白,由 17 号染色体上的 HER-2 致癌基因编码。HER-2 属于四种蛋白组,其他四种蛋白包括 HER-1(也称为表皮生长因子受体 (EFGR))、HER-3 和 HER-4。HER-2 通过与 HER3 的同源二聚化或异源二聚化激活。一旦被激活,它会启动一系列细胞内信号传导,促进肿瘤发生 [3] 。HER-2 的表达首先通过免疫组织化学 (IHC) 评估,然后以 0-3 + 的评分报告。可能的结果包括未扩增 (IHC 0)、HER-2 低 (IHC 1 +)、
尽管人工智能 (AI) 的诞生已有 50 多年,但在过去十年中,临床领域的 AI 研究得到了显著扩展。1 随着公共和私人研究人员和机构创建出越来越复杂的 AI 模型,临床医生有望在患者管理方面实现范式转变,无论是在人群层面还是在个人层面。截至本文撰写时,一般临床使用的 AI 应用包括可以解析患者症状并建议是否需要进一步评估(以及具体评估内容)的虚拟聊天机器人 2 、3 可以评估是否存在心房颤动的可穿戴技术 4 ,可以帮助临床医生实时识别结肠息肉的模型 5 ,以及可以汇总医院结果以便与其他机构进行比较的算法。6
剂量调整的证据有限,eviQ 上的建议仅供参考。他们通常是保守的,强调安全。任何剂量调整都应基于临床判断和个体患者的情况,包括但不限于治疗意图(治愈性与姑息性)、抗癌方案(单一疗法与联合疗法与化疗与免疫疗法)、癌症生物学(部位、大小、突变、转移)、其他治疗相关副作用、其他合并症、体能状态和患者偏好。建议的剂量调整基于临床试验结果、产品信息、已发布的指南和参考委员会共识。除非另有说明,否则剂量减少适用于每个单独的剂量,而不适用于总天数或治疗周期持续时间。除非另有说明,否则非血液学分级基于不良事件通用术语标准 (CTCAE)。肾脏和肝脏的剂量调整已尽可能标准化。有关更多信息,请参阅剂量注意事项和免责声明。
- 用户可以从公共门户网站下载并打印一份出版物的副本,以进行私人研究或研究。- 您可能不会进一步分发材料或将其用于任何盈利活动或商业收益 - 您可以自由分发URL,以确定公共门户网站中的出版物 - 如果您认为此文件违反版权,请通过vbn@aub.aau.dk与我们联系,我们将立即删除工作的详细信息,并立即删除访问详细信息并调查您的索赔。
•通过基于组织的分析进行了记录的RAS状态(突变体或WT)•没有微卫星不稳定性高(MSI-HIGH)或不匹配修复缺陷(DMMR)CRC•已接受以下SOC抗癌治疗,作为转移性CRC的先前疗法,并且在射线仪上有射面上的进展,是雷神的,是避免了这些恐怖分子的恐怖分子。a。系统性SOC抗癌疗法必须包括以下所有药物:i。氟嘧啶,伊立替康和奥沙利铂,有或没有抗血管内皮生长因子(VEGF)单克隆抗体(例如,贝伐单抗)II。抗发育生长因子受体(EGFR)单克隆抗体(例如,Cetuximab或Panitimumab)用于RAS野生型(WT)受试者III。BRAF抑制剂针对已知BRAF V600E突变的受试者•在最新批准的SOC化学治疗方案的最后剂量后3个月内或在3个月内进行的射线照相进展
肠球菌是肠球菌的成员,由于其潜在的致病性和抗生素耐药性,在水产养殖方面已成为一个重要的关注。这项研究旨在研究从公共鲤鱼(Cyprinus parpio)和罗非鱼(Oreochromis niloticus)中分离出的六种不同的肠球菌物种的分子诊断和表征,并评估了它们的遗传多样性,抗生素抗性谱谱以及潜在的毒素性因子。在分离株中,有65.3%的普通鲤鱼和60.8%的罗非鱼被鉴定为粪肠球菌。所有六个物种都证明了代谢各种碳水化合物的能力,表明代谢能力广泛。某些物种在特定碳水化合物的利用中显示出可变性。例如,粪肠球菌和粪肠球菌具有独特发酵的adonitol,而E. avium和E. hirae是唯一能够发酵D-弧菌醇的人。此外,在粪肠球菌中仅观察到voges-proskauer阳性。在生长条件下,除了粪肠球菌外,所有物种在4°C和45°C的繁殖中都繁殖,而大肠球菌未能在10°C下生长。E.粪便和E.粪便在pH 9.6生长良好。 溶血测试揭示了该物种之间的差异:粪肠球菌显示β-溶解性,而Gallinarum大肠杆菌表现出α-溶解。 仅在gallinarum大肠杆菌中观察到运动,而Esculin水解是粪肠球菌独有的。 环境适应性在物种之间有所不同。 E.鸟在6.5%NaCl中的生长有限,一些物种在0.1%甲基蓝牛奶中几乎没有生长。E.粪便和E.粪便在pH 9.6生长良好。溶血测试揭示了该物种之间的差异:粪肠球菌显示β-溶解性,而Gallinarum大肠杆菌表现出α-溶解。仅在gallinarum大肠杆菌中观察到运动,而Esculin水解是粪肠球菌独有的。环境适应性在物种之间有所不同。E.鸟在6.5%NaCl中的生长有限,一些物种在0.1%甲基蓝牛奶中几乎没有生长。粪肠球菌和大肠杆菌在60°C下显示生存15分钟,粪肠球菌在30分钟时显示出有限的生存率,使它们与其他物种区分开。从巴斯拉市当地养鱼场收集的cyprinus腕牛和尼洛菌分离的菌株被证实为16S rRNA基因测序的粪肠球大肠杆菌。使用特定引物的PCR研究将所有分离株鉴定为粪肠球菌。
地址:巴西的Goiânia-Goiás:erikaquino345@gmail.com orcid:https://orcid.org/0000-0000-0002-5659-0308摘要许多许多微生物在人类胃肠道中居住在人类胃肠道中,在健康中起重要作用,在健康中起着重要的作用。幽门螺杆菌是一种适合胃粘膜的革兰氏阴性细菌,可引起慢性胃炎,胃溃疡和胃腺癌。感染会改变胃酸性,影响胃肠道菌群并影响宿主健康。本综述旨在确定幽门螺杆菌感染对胃肠道菌群的影响。审查了10篇文章,从PubMed中发现的637条中选择,描述了幽门螺杆菌与胃肠道菌群之间的关系。观察到幽门螺杆菌感染会影响动脉粥样硬化和胃病理的发展。H.幽门螺杆菌消除可能会干扰肠道微环境的体内平衡,并且有必要评估每个人的风险/福利比。感染还会影响口腔肠轴,影响宿主健康和系统性疾病的发展。口服微生物组的组成对于健康至关重要,但感染可能是不平衡的。口服细菌(例如核细菌核细菌和链球菌突变)可以与幽门螺杆菌相互作用,影响其存活和定殖。胃微生物组的不同与肠道对胃健康至关重要。H.幽门螺杆菌定殖改变了胃酸性和微生物组成,具有显着意义。H.幽门螺杆菌消除可能会部分恢复微生物群,尽管可能发生变化。这些发现强调了继续研究幽门螺杆菌与口腔,胃和肠道微生物瘤之间的相互作用及其临床后果的重要性。关键字:幽门螺杆菌,胃肠道,微生物群。抽象的许多微生物都存在于人类胃肠道中,在健康和疾病中发挥了重要作用。幽门螺杆菌,革兰氏阴性细菌适应胃粘膜,可导致慢性胃炎,胃溃疡和胃腺癌。感染替代胃酸性,胃肠道菌群和影响宿主健康。本评论旨在确定H的影响。胃肠道菌群上的幽门螺杆菌感染。审查了十篇文章,从PubMed上发现的637条中选择,描述了幽门螺杆菌与胃肠道菌群之间的关系。可以看出,幽门螺杆菌感染会影响动脉粥样硬化和胃病理的发展。幽门螺杆菌的架构可能破坏肠道微环境的体内平衡,需要风险/福利
功能性胃肠病(FGID)又称肠脑相互作用疾病,是一类以常规检查无法确诊病理但出现慢性胃肠道症状的疾病。该类疾病在临床实践和社区中很常见[1]。根据最近一项采用罗马 IV 诊断标准的调查,FGID 在全世界的患病率约为 40%[2]。最新的分类方案(ROME IV)将 FGID 分为 33 种成人疾病和 20 种儿科疾病;最常见的亚型是肠易激综合征(IBS),其特征是腹部不适、排便习惯改变和腹胀,以及功能性消化不良(FD),其引起上腹部疼痛、不适和饱足感[3]。 FGID 的病理生理机制复杂,但有报道称肠道菌群在 FGID 的发展和临床症状的调节中起着关键作用 [4,5]。值得注意的是,最新证据表明 FGID [6,7] 与肠道菌群失调有关,肠道菌群失调是指肠道细菌的多样性、密度或代谢活性发生相关变化 [8]。以前,FGID 主要与社会心理状况有关,但对其病理生理机制认识的提高改变了这种看法。FGID 患者的治疗现在考虑其遗传易感性、表观遗传学、神经连接、生活习惯、肠神经系统 (ENS)、环境因素及其与菌群的相互作用 [3]。必须指出的是,近年来 FGID 的治疗选择已取得重大进展,甚至包括内镜治疗选择,例如在难治性胃轻瘫病例中的应用[9,10]。肠道微生物组是一个异质性密集的微生物系统,通过广泛的生化途径网络调节宿主的生理和病理生理[3,11]。最初,肠道微生物组的致病成分被证实与 FGID 相关,多达 10% 的肠易激综合征 (IBS) 患者发生胃肠道感染,随后出现肠道微生物组失调,导致 IBS(感染后 IBS)的发生[12]。技术的进步提高了我们对肠道微生物组的认识[13]。关于微生物在功能性胃肠道疾病中的作用,一个令人信服的证据来自对无菌(GF)小鼠的研究,该研究显示在接受功能性胃肠道疾病患者粪便微生物移植(FMT)后,肠道运输、内脏感觉和肠道屏障功能发生了改变[3,14,15]。人们对功能性胃肠道疾病患者小肠和结肠肠道微生物的变化进行了广泛的研究[3,12],因为它们会影响肠道运动、肠道气体分布、肠道免疫和肠道屏障功能、内脏感觉、神经免疫内分泌界面以及肠脑轴[3,16,17]。
KIT 和 PDGFRA 在胃肠道间质瘤 (GIST) 的致癌过程中起着重要作用,小分子已被用于靶向这种癌症中的 KIT 和 PDGFRA 通路并取得了巨大成功。然而,大约 10% 的 GIST 患者对目前的靶向药物治疗有抗药性。有必要探索其他潜在靶点。尽管 p53 变异在大多数癌症中经常发生,但关于 GIST 中 p53 的研究却很有限。CDKN2A/MDM2/p53 轴调节细胞周期进程和 DNA 损伤反应,进而控制肿瘤生长。该轴是从低风险到高风险 GIST 转变所需的主要事件。通常,p53 突变在 GIST 中并不常见,但据报道 p53 过表达与高风险 GIST 和不良预后有关,这意味着 p53 应该在 GIST 中发挥关键作用。此外,Wee1 还调节细胞周期,据报道,Wee1 抑制的抗肿瘤活性依赖于 p53 突变体。此外,据报道,Wee1 通过调节 KIT 蛋白在 GIST 中具有潜在活性,这种机制可能依赖于 p53 状态。在本文中,我们回顾了以前关于 p53 在 GIST 中的作用的报告,并提出针对 p53 通路作为 GIST 的一种新的额外治疗策略。
摘要背景:癌症中最常见的零星纯合缺失之一是9p21损失,其中包括甲基硫酸盐基因氨基磷酸化酶(MTAP),CDKN2A和CDKN2B,并且与恶化的结构和免疫治疗疗法相关。mtap -loss是通过与MAT2A和PMRT5抑制剂的合成致死性来发展的药物靶标。这项研究的目的是研究晚期胃肠道(GI)肿瘤中MTAP-损失的患病率和基因组局势,并研究其作为预后生物标志物的作用。材料和方法:我们对包括5个GI癌的64 860个肿瘤进行了下一代测序以及比较基因组和临床分析。我们比较了一项回顾性研究,比较了gi癌患者的临床结果。结果:GI癌症中MTAP -loss的患病率为8.30%。mtap -loss在胰腺导管腺癌(PDAC)中最普遍,为21.7%,结直肠癌(CRC)为1.1%。mTAP -loss肿瘤更为普遍。在MTAP -loss肿瘤中观察到了潜在靶向基因组改变的患病率(ATM,BRAF,BRCA2,ERBB2,IDH1,PIK3CA和PTEN)的显着差异,并根据肿瘤类型而变化。mtap -loss PDAC,IHCC和CRC的患病率较低或肿瘤突变负担升高。结论:在GI癌中,MTAP -loss是9P21损失的一部分,总体患病率为8%。阳性PD -L1肿瘤细胞表达在MTAP -loss与MTAP -INTACT IHCC肿瘤(23.2%vs 31.2%,p = .017)中的频率较低。mtap -loss发生在22%的PDAC,15%的IHCC,8.7%的胃食管腺癌,2.4%的肝细胞癌和CRC的1.1%,并且与其他可靶向突变相互排斥。关键词:MTAP损失; 9p21损失;基因组学;生物标志物;瘤;胆管癌。