没有动脉和/或有限的静脉与血管接触,只有 10-15% 的患者符合这些标准 (5)。对于患有转移性晚期疾病或 PDAC 复发的患者,细胞毒性化疗方案是标准治疗,总生存期 (OS) 在数周至数月之间 (4)。单药吉西他滨于 1997 年获批,尽管临床反应不佳,中位生存期约为 6 个月 (6),它仍然是 PDAC 的标准治疗方法超过二十年。表皮生长因子受体 (EGFR) 抑制剂厄洛替尼与吉西他滨联合使用,与单独使用吉西他滨相比,PDAC 患者的 OS 延长了 10 天,并于 2005 年获得 FDA 批准 (7)。 2011 年,一种更强烈的化疗方案 FOLFIRINOX(奥沙利铂、伊立替康和氟尿嘧啶/亚叶酸钙)获批用于 PDAC 治疗,生存期延长约 11 个月 (8)。然而,正如预期的那样,这种方案的毒性更高,因此只有体能状态较高的患者才有资格接受这种治疗。2013 年,白蛋白紫杉醇(一种白蛋白结合的紫杉醇制剂)与吉西他滨 (NPT + Gem) 联合使用,中位生存期为 8.5 个月,这促使 FDA 批准这种组合作为 PDAC 患者的一线治疗方案 (9)(表 1)。
在这项 I 期剂量递增研究中,我们试图确定间变性淋巴瘤激酶/c-ROS 致癌基因 1 受体 (ALK/ROS1) 抑制剂色瑞替尼与吉西他滨为基础的化疗联合治疗晚期实体瘤患者的最大耐受剂量 (MTD)。次要目标是表征这些组合的安全性、药代动力学和初步疗效,并确定疗效的潜在生物标志物。色瑞替尼与吉西他滨 (Arm 1)、吉西他滨/nab-紫杉醇 (Arm 2) 或吉西他滨/顺铂 (Arm 3) 联合使用。通过串联质谱检测 (LC-MS/MS) 测量血浆中的药物浓度。我们通过免疫组织化学分析了存档肿瘤组织中的 ALK、ROS1、肝细胞生长因子受体 (c-MET) 和 c-Jun N-末端激酶 (JNK) 表达。第 2 组因毒性而提前关闭。21 名患者可评估剂量限制
胆道肿瘤(BTC)约占所有消化系统肿瘤的3%,发病率和有限的治疗选择,特别是对于晚期阶段,强调了对创新疗法的需求。这项回顾性队列研究评估了一种新型方案的安全性和功效,该方案将肝动脉输注化学疗法与5-氟尿嘧啶,白细胞蛋白和奥沙利氨基蛋白(MFOLFOX-HAIC)(MFOLFOX-HAIC)与Lenvatinib和Lenvatinib和Lenvatinib和程序性细胞死亡蛋白1(PD-1)(PD-1)抑制剂(Mfolfox-haic)相结合(MFOLFOX-HAIC)(MFOLFOX-HAIC)(MFOLFOX-HAIC)(MFOLFOFOX-5ENIC)抑制剂(MFOLFOLFOLFOLFOLFOLFOFFENIB)在2019年3月至2023年11月治疗的高级BTC患者中,Gemcitabine Plus Cisplatin,Gemcitabine Plus S1或Gemcitabine Plus Oxaliptin(GC/GS/Gemox)的方案。总共分析了89例患者,55例接受肝动脉输注化疗,34例接受GC/GS/Gemox方案。其中,有23名患者参加了MFOLFOX-HAIC+LENVATINIB+PD-1I组,而24例则在GC/GS/Gemox组中。MFOLFOX-HAIC+LENVATINIB+PD-1I组的无进展生存期(MPF)为15个月,而GC/ GS/ Gemox组为6个月。同样,MFOLFOX-HAIC+LENVATINIB+PD-1I组的总体生存期(MOS)为20个月,而GC/GS/Gemox组为13个月。MFOLFOX-HAIC+LENVATINIB+PD-1I组的客观缓解率(ORR)和疾病控制率(DCR)分别为48.5%和87.0%,两者均显着高于在三个月治疗时GC/ GS/ Gemox组中观察到的。总体而言,MFOLFOX-HAIC+LENVATINIB+PD-1I似乎是晚期BTC的安全且耐受性良好的治疗方法,与标准方案相比,MPFS和MOS具有优越性的MPF和MOS。MFOLFOX-HAIC+LENVATINIB+PD-1I组和GC/GS/Gemox组的发生率相似,分别为86.5%和84.2%,并没有统计学意义的并发症率差异。
抽象背景选择了表皮生长因子受体(EGFR)的治疗方法,这些缺口的非小细胞肺癌(NSCLC)患者具有osimertinib抗性的患者,这是具有挑战性的。我们评估了SNK01(自体杀伤(NK)细胞)与细胞毒性化学疗法和/或Cetuximab(一种抗EGFR单克隆抗体)结合使用的安全性和有效性。方法,我们开发了一种具有抗osimertinib的肺癌细胞系的细胞系衍生的异种移植人源化小鼠模型。根据治疗(无治疗,西妥昔单抗,SNK01和组合组)将小鼠分为四组,每周治疗5周。在临床研究中,有12例EGFR突变的NSCLC患者在先前的酪氨酸激酶抑制剂(TKI)失败,每周与吉西他滨/卡氏蛋白酶(n = 6)或cetuximab/gemcitabine/carboplatin/carboplatin(n = 6)和dose eSclation of gemcitabine/carboplatin(n = 6)和dose eSclation of gemcitabine/carboplatin(n = 6)和3+3+3+3;在非临床研究中,在SNK01组中观察到血液中NK细胞和NK细胞肿瘤浸润增强的增加。治疗后提取的肿瘤体积是联合组中最小的。在临床研究中,每周7-8周(4×10 9细胞/剂量(n = 6); 6×10 9细胞/剂量/剂量(n = 6)),每周接受12例患者(中位年龄,60.9岁;所有腺癌病例)每周接受SNK01。SNK01的最大可行剂量为6×10 9细胞/剂量,无剂量限制毒性。疗效结果显示,客观反应率为25%,疾病控制率为100%,中值无进展生存期为143天。结论SNK01与包括西妥昔单抗在内的细胞毒性化学疗法结合使用,用于具有TKI耐药性的EGFR突变的NSCLC,并且具有潜在的抗肿瘤作用。试验注册号NCT04872634。
最近的研究发现,缺氧通过诱导外泌体的分泌有助于肿瘤进展和耐药性。然而,胰腺癌中这种耐药性的基础机制仍有待探索。在这项研究中,我们研究了缺氧诱导的肿瘤衍生外泌体(HEXO)对胰腺癌细胞中吉西他滨的干性和耐药性以及此过程中涉及的分子机制的影响。首先,我们发现缺氧促进了胰腺癌细胞中对吉西他滨的耐药性。其次,我们表明胰腺癌细胞在常氧或低氧条件下分泌的外泌体可以转染到肿瘤细胞中。第三,证明六边形促进了胰腺癌细胞中吉西他滨的增殖,干性和耐药性,并抑制了吉西他滨引起的凋亡和细胞周期停滞。最后,已证实,己糖通过转移外Nyosomal长的非编码RNA调节剂(LNCROR)(LNCROR)的外泌体长期非编码RNA调节剂,使胰腺癌细胞中的河马/与YES相关蛋白(HIPPO/YAP)途径灭活。总而言之,低氧肿瘤微环境可以促进胰腺癌细胞中吉西他滨的耐药性并抗药性。从机械上讲,六边形增强了干性,通过通过河马信号转移LNCROR来促进胰腺癌细胞的化学耐药性。因此,外泌体lncror可以作为胰腺癌化学疗法的候选靶标。
胆道癌 (BTC) 是一类异质性罕见恶性肿瘤,可起源于胆道任何部位,但预后均不良。BTC 细分为肝内胆管癌 (ICCA)、肝外胆管癌 (ECCA) 和胆囊癌。ICCA 起源于肝实质,而 ECCA 可起源于肝脏以外胆道的任何部分,可进一步分为肝门部胆管癌或远端胆管癌 (1)。ICCA 和 ECCA 的全球发病率都在增加 (2,3)。预计 2020 年全球原发性肝癌(包括肝细胞癌和胆道癌)新发病例为 906,000 例,其中 ICCA 约占 10-15% (4)。 ABC-02 III 期试验确立了晚期 BTC 的首选治疗方法,与吉西他滨相比,吉西他滨联合顺铂组的 OS 显著改善(中位数 11.7 个月对 8.1 个月,HR 0.64)(5、6)。一项 II 期非随机单组临床试验研究了在吉西他滨-顺铂中添加白蛋白紫杉醇(7)。中位 PFS 为 12.2 个月,中位 OS 为 19.2 个月,与历史对照相比更为有利。最近,TOPAZ-1 试验中将度伐单抗添加到化疗中取得了积极成果(8)。在该研究中,与单独使用吉西他滨和顺铂相比,度伐单抗联合顺铂和吉西他滨可使死亡风险降低 20%,达到了试验的主要终点,
在泌尿膀胱癌(UBC)的患者中,经常观察到高肿瘤复发,需要预后和药物反应的生物标志物。化学耐药性和随后的癌症复发是由肿瘤引发细胞的亚群(即癌症干细胞(CSC))驱动的。然而,化学疗法诱导的CSC富集中的潜在分子机制在很大程度上尚不清楚。在这项研究中,我们发现在吉西他滨治疗期间lncRNA-low表达在肿瘤中(lncRNA-let)在化学抗性的UBC中被下调,并伴有CSC群体的富集。敲低LNCRNA-LET增加了UBC细胞的干性,而LNCRNA-LET延迟的吉西他滨诱导的肿瘤复发的强迫表达。此外,通过LNCRNA-LET启动子中的SMAD结合元件(SBE),通过吉西他滨治疗诱导的TGFβ /SMAD信号传导过度激活TGFβ /SMAD信号的过度激活LNCRNA-LET。因此,降低的lncRNA-LET增加了NF90蛋白稳定性,进而抑制了miR-145的生物发生,随后导致了由升压水平HMGA2和KLF4升高的CSC的积累。用TGFβRI的临床相关特异性抑制剂LY2157299用LY2157299处理吉西他滨耐药的异种移植物,使它们敏感到吉西他滨,并显着降低了体内肿瘤性的。值得注意的是,TGFβ1的过表达,加上LNCRNA-LET水平降低和miR-145的水平预测UBC患者的预后不良。总的来说,我们证明了吉西他滨诱导的TGFβ1通过增强癌细胞的干性促进UBC化学耐药性,使lncRNA-LET/NF90/miR-145轴失调。TGFβ1/lncRNA-let/miR-145的组合变化在UBC结果中提供了新的分子预后标记。因此,针对此轴可能是治疗UBC患者的一种有希望的治疗方法。
随机 III 期 BIL-CAP 试验的最新有争议的结果支持使用辅助卡培他滨,因为与单独观察相比,实验组的 OS 更长(分别为 53 个月和 36 个月,风险比 [HR] 0.75,95% CI 0.58-0.97;在预设的按方案分析中 P = 0.0028)。14 对于晚期 BTC 患者,继具有里程碑意义的 ABC-02 试验比较顺铂-吉西他滨 (CisGem) 双药与吉西他滨单药治疗后,一线全身化疗代表了目前的标准治疗方法。 15 根据这项针对 410 例 BTC 的 III 期试验结果,CisGem 报告称,与吉西他滨相比,该药物在总体人群以及不同解剖亚组中具有统计学上显著的 OS 优势(11.7 个月 vs. 8.1 个月,HR 0.64,95% CI 0.52-0.80;P < 0.001)。这些结果已得到日本 BT22 试验的证实,参考双药组的中位 OS 为 11.2 个月,而接受吉西他滨单药治疗的患者中位 OS 为 7.7 个月。16
图 2:DLD-1 BRCA2 (-/-) 细胞在菌落形成试验中对 NU1025 表现出选择性敏感性,而对非靶向药物吉西他滨没有选择性。
5.0 months and mOS 8.1 months in gemcitabine alone arm) (9). There is no established second line treatment for advanced BTC, but a recent randomized phase III trial (ABC-06) showed a mOS for 5-fluorouracil and oxaliplatin (FOLFOX) of 6.2 months in patients with disease progression after gemcitabine plus cisplatin (10). These outcomes will form the basis of comparison to the trials described in this review. With limited treatment options and dismal overall prognosis, new therapies and approaches are an urgent unmet need in BTC (11). Clinical trials using targeted agents have historically shown only modest responses in BTC patients, though there has been recent success in treating cholangiocarcinomas with isocitrate dehydrogenase-1 (IDH1) and FGFR genetic alterations with novel targeted agents (12-15). Even in these settings, responses have variable durability and more effective, durable therapies are needed. Immunotherapy has had tremendous success in treating patients with cancers such as melanoma and non-small cell lung cancer, dramatically altering the natural history of these diseases. In BTC, immunotherapy strategies have included autologous cell transfer, vaccinations and immunomodulatory approaches with immune checkpoint inhibitors (ICIs), the latter of which is the largest area of ongoing research. In this review, we describe the rationale for ICI therapy by summarizing the clinically relevant tumor immunology in BTC including the innate and adaptive immune response and immune checkpoint molecule expression in BTC. Subsequently we discuss completed and ongoing clinical trials involving ICI in BTC.