。CC-BY 4.0国际许可证。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月25日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.30.635633 doi:biorxiv preprint
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月27日发布。 https://doi.org/10.1101/2025.02.22.639690 doi:Biorxiv Preprint
抽象背景:磷是所有生物体中必不可少的营养素,目前,由于其全球稀缺,磷从排泄物产生的环境影响以及由于其以植物中的植物形式存储而引起的消化率较低。在家禽中,磷利用受到回肠菌群和宿主遗传学的组成的影响。在我们的研究中,我们分析了宿主遗传学对回肠菌群组成的影响,以及回肠细菌属的相对丰度与日本鹌鹑中磷的相对丰度与磷利用和相关定量性状的关系。用4K基因组的单核苷酸多态性(SNP)对758个鹌鹑的F2交叉进行了基因分型,并使用靶扩增子测序对回肠菌群的组成进行了表征。遗传性,并针对可遗传的属进行了宿主的定量性状基因座(QTL)链接映射。使用结构方程模型估算了细菌属和定量性状之间的表型和遗传相关性以及递归关系。采用基因组最佳线性无偏预测(GBLUP)和微生物(M)BLUP全息素选择方法,用于评估基于宿主基因组和基于ileum Microbobiota组成的可遗传的磷利用的繁殖可行性。结果:在检查的59个细菌属中,有24个显示出显着的遗传力(名义P≤0.05),范围从0.04到0.17。对于这些属,绘制了六个全基因组显着的QTL。发现了显着的递归效应,从而通过鹌鹑回肠中的微生物群组成来支持间接宿主遗传对宿主定量性状的影响。交叉验证的微生物和基因组预测准确性证实了微生物组成和宿主遗传学对宿主定量性状的强烈影响,因为基于基于传统的微生物介导的成分的GBLUP精确度与基于基于基因组范围Snps的常规GBLUP的精确度相似。结论:我们的结果表明,宿主遗传学对回肠微生物群的组成产生了显着影响,并证实了回肠微生物群的宿主遗传学和组成对宿主的定量性状有影响。这提供了基于宿主基因组和回肠菌群组成的可遗传部分改善磷利用的可能性。
mantamonads被认为代表了真核生物树中的“孤儿”谱系,可能在真核生物根部最常假定的位置附近分支。最近的系统基因分析将它们与“ crums”超组的一部分以及胶状果糖和核纤维相同。这个超组似乎是在氨甲基底部分支的,这对于理解真核生物的深层进化历史至关重要。但是,缺乏代表性物种和与之相关的完整基因组数据阻碍了其生物学和进化的研究。在这里,我们隔离并描述了两种新的Mantamonads,Mantamonas vickermani sp。nov。和mantamonas sphyraenae sp。nov。,对于我们生成的转录组序列数据以及后者的高质量基因组。Sphyraenae基因组的估计尺寸为25 MB;我们的从头组装似乎是高度连续的,并具有9,416个预测的蛋白质编码基因。这个近染色体规模的基因组组装是CRUMS超级组的第一个描述。
coelacanth,Gingko,Tuatara等遗物是以前在生态和分类学上更多样化的谱系的残余物。它提出了为什么它们目前贫穷,生态限制并且通常容易灭绝的问题。估计杂合性水平和人口统计学历史可以指导我们对遗物物种的进化史和保护性的理解。然而,与脊椎动物相比,很少有研究重点是遗物无脊椎动物。我们对Baronia brevicornis(鳞翅目:木瓜科)的基因组进行了测序,该基因组是一种濒危物种,是所有燕尾蝴蝶的姐妹物种,是所有现存蝴蝶中最古老的谱系。从干燥的标本中,我们能够同时生成长阅读和短读数据,并作为男爵的基因组为406 MB的基因组。与其他燕尾黄油蝇相比,我们发现了相当高的杂合性(0.58%),这与其濒危和危险状态形成鲜明对比。考虑到重组与突变的高比例,人口统计学分析表明,在过去一百万年前开始的有效人口规模急剧下降。此外,男爵基因组用于研究乳头状科中的基因组大小变异。基因组大小主要是通过可转座的元素活动来解释的,这表明大基因组似乎是燕尾蝴蝶中的一个衍生特征,因为最近的可转座元素活动是最近的,并且涉及物种之间不同的可替代元素类。第一个男爵基因组提供了一种资源,用于协助旗舰和遗物昆虫物种的保护以及了解吞咽基因组进化。
Pauline Garcia,William Jarassier,Caroline Brun,Lorenzo Giordani,Fany Agostini等。SETDB1保护鼠肌肉干细胞中的基因组完整性,以允许再生性肌生成和感染。发育细胞,2024,59(17),pp.2375-2392.e8。10.1016/j.devcel.2024.05.012。hal- 04747691
对最近的人类基因组组装的比较分析突出了显著的序列差异,这种差异在着丝粒等多态性位点内达到顶峰。这引发了一个问题,即依赖人类参考基因组来准确分析来自实验细胞系的测序数据是否合适。在这里,我们提出了一种称为“同基因组参考”的新方法,该方法利用匹配的参考基因组进行多组学分析。我们为人类视网膜上皮细胞 (RPE-1) 生成了一个新的二倍体基因组组装,RPE-1 是一种广泛使用的非癌症实验室细胞系,具有稳定的二倍体核型,呈现出完全跨越着丝粒的分阶段单倍型和染色体水平支架。利用该组装体,我们表征了 RPE- 1 独有的单倍型解析基因组变异,包括一个稳定的标记染色体 X,其中 73.18 Mb 的 10 号染色体片段重复易位至该细胞系特有的微缺失端粒 t(X q ;10 q )。比较分析揭示了着丝粒区域内的序列多态性,包括所有染色体单倍型之间的意外遗传和表观遗传多样性。使用我们的组装体作为参考,我们重新分析了我们自己的和公开的 RPE-1 中生成的测序、甲基化和表观遗传数据,这些数据之前已使用非匹配和非二倍体参考基因组进行分析。我们的结果表明,同基因组参考可改善比对,将映射质量提高高达 85%,同时将错配减少一半,从而导致与着丝粒相关的峰调用发生显著变化。我们的工作代表了一个概念验证,展示了匹配的参考基因组在多组学分析中的应用,并在规模上为全面组装实验相关细胞系以广泛应用同基因组参考基因组奠定了基础。关键词:人类参考;二倍体基因组;从头组装;基因组参考;着丝粒组装;实验室细胞系;多组学分析;表观遗传学;人类多态性;实验细胞系;同基因组参考。
癌症源自基因组的改变,了解这些变化如何导致疾病对于实现精确肿瘤学的目标至关重要。将基因组改变与健康结果联系起来需要使用准确的算法进行广泛的计算分析。多年来,这些算法已经变得越来越复杂,但是绝对的开放访问金标准数据集的严重短缺提出了一个基本挑战。由于基因组数据被视为个人健康信息,因此只能共享和重新分布一定数量的深入测序遗留癌症基因组。因此,工具基准测试通常是在与较旧技术和不确定基础真相的相同基因组集上进行的。这是开发改进分析工具的主要障碍。为了解决这个问题,我们开发了Oncogan,这是一种新型的生成AI工具,它结合了生成性对抗网络和表格变异自动编码器,以基于源自大规模基因组项目的训练集生成现实但完全合成的癌症基因组。我们的结果表明,这种方法准确地再现了多种常见癌症类型的体细胞突变,拷贝数改变和结构变异的规模,分布和特征,同时保护捐助者的隐私信息。Oncogan准确地概括了肿瘤类型特异性突变特征以及体细胞突变的位置分布。为了评估模拟的保真度,我们使用DeepTumour测试了合成基因组,该软件能够根据突变模式识别肿瘤类型,并证明了合成基因组肿瘤类型和DeepTumour类型的预测之间的一致性很高。我们还表明,使用Oncogan生成的合成数据增加实际供体数据可用于训练更准确的DeepTumour版本。
许多蛇类以背部和侧面的六边形图案而闻名。先前的研究表明,这种图案存在于外皮鳞片中,这些图案来自斑块,斑块是皮肤上的微小结构。对于大多数动物物种来说,斑块在皮肤上的位置是随机的。对于蛇类来说,情况并非如此。相反,它们以有组织的方式发育。它们是如此有组织,以至于艾伦·图灵能够用数学公式来描述它们。在这项新的研究中,研究小组想知道这种井然有序的六边形图案是如何在蛇身上形成的。
此预印本版的版权持有人于2025年2月23日发布。 https://doi.org/10.1101/2025.02.18.25321172 doi:medrxiv preprint