在Riemannian几何形状中,双曲几何空间(具有负曲率)可以直观地理解为连续的树和球形几何空间(具有正曲率),用于建模周期性图。
摘要 — 通过技术手段进行手臂和手部跟踪可以收集可用于确定手势含义的数据。为此,机器学习算法主要被研究以寻找最高识别率和最短识别时间之间的平衡。然而,这种平衡主要来自于统计模型,而统计模型很难解释。与此相反,我们提出了 µC 1 和 µC 2,两种基于几何模型的手势识别方法,支持识别过程的可视化和几何解释。我们将 µC 1 和 µC 2 与两种经典机器学习算法 k-NN 和 SVM 以及两种最先进的深度学习模型 BiLSTM 和 GRU 进行比较,实验数据集包含意大利手语 (LIS) 的十个手势类别,每个类别由五名没有经验的非母语手语者重复 100 次,并通过可穿戴技术(传感手套和惯性测量单元)收集。最终,我们在高识别率(> 90%)和低识别时间(< 0.1 秒)之间实现了折衷,这足以满足人机交互的需要。此外,我们基于几何代数详细阐述了算法的几何解释,这有助于对识别过程有所理解。
携带轨道角动量 (OAM) 的表面等离子体极化子,即等离子体涡旋,在光学捕获、量子信息处理和通信领域引起了广泛关注。先前对近场 OAM 的研究仅限于产生单个等离子体涡旋,这不可避免地降低了进一步的片上应用。几何超表面是超材料的二维对应物,具有前所未有的操控电磁波相位、偏振和振幅的能力,为控制等离子体涡旋提供了灵活的平台。在这里,我们提出并通过实验演示了一种基于几何超表面实现太赫兹 (THz) 等离子体涡旋复用的方法。在圆偏振 THz 波的照射下,在金属/空气界面处产生多个具有相同拓扑电荷的等离子体涡旋。此外,还展示了从自旋角动量到多个等离子体 OAM 的转换,即具有不同拓扑电荷的多个等离子体涡旋。由具有不同平面方向的成对空气缝组成的几何超表面旨在展示这些特性。我们提出的方法可能为信息容量不断增加的片上应用开辟一条道路。
的最大潜力在于实现更多铸态、净形状和低成本特征。位置公差和轮廓公差在铸造设计中未得到充分利用的最可能原因是其明显的复杂性。因此,本案例研究 3 的目的是解开复杂性,使其易于理解和应用。即使是为了更新旧的 2D 图纸(这是本铸造质量提示的背景),将某些特征转换为位置公差并将某些表面转换为轮廓公差也是值得的,而且效果很好。它之所以有效,是因为这两种公差方法使得由金属铸造供应商团队中的新合同授予者生产的传统替换零件铸件在首件检验时更容易获得批准。这是一个节省大量时间和成本的机会,可以帮助所有相关人员。以下示例展示了如何应用 GD&T 以获得强大而有益的结果的三个简单场景。
介绍了一种用于积云立体摄影测量的数码相机校准技术。该技术已被用于表征在积云摄影测量、现场和多普勒观测 (CuPIDO) 项目期间观察到的夏季雷暴的形成。从相机位置、方向和地标调查的粗略测量开始,通过最小化几何误差 (GE) 获得相机的准确位置和方向。一旦获得准确的相机参数,就可以通过三角测量计算云特征点的 3D 位置。本文的主要贡献如下。首先,证明了 GE 在相机真实参数的邻域中只有一个最小值。换句话说,即使初始测量值与其真实值之间存在显著差异,搜索 GE 的最小值也能使作者找到正确的相机参数。其次,开发了一种新的由粗到细的迭代算法,该算法最小化 GE 并找到相机参数。数值实验表明,由粗到细算法是高效且有效的。第三,提出了一种基于地理信息系统 (GIS) 而非现场测量的新型地标调查。在这些实验中,GIS 地标调查是一种有效且高效的获取地标世界坐标以进行相机校准的方法。通过 NASA/地球观测系统卫星和仪表飞机收集的数据验证了该技术。本文以先前的研究为基础,详细介绍了校准和 3D 重建。
我们研究了从一组自动提取自单幅室内图像的线段中生成场景的合理解释的问题。我们表明,即使存在遮挡物体,我们也可以识别建筑物内部的三维结构。通过几何推理提出了几种物理上有效的结构假设,并进行了验证,以找到最适合线段的模型,然后将其转换为完整的 3D 模型。我们的实验表明,我们从线段恢复的结构与使用完整图像外观的方法相当。我们的方法展示了如何使用一组描述线段组之间几何约束的规则来修剪场景解释假设并生成最合理的解释。
过去几十年来,统计力学、动力系统理论和信息论的研究表明,信息是一个动态量,在物理学中起着根本性的作用 1–3 。许多经典现象和热力学现象可以通过信息论的视角得到更好的理解;一个相关的例子就是近年来量子信息科学的出现。今年夏天,我探索了将经典信息论的形式扩展到量子领域的各种方法。现有几条量子信息论定理证明了不能做的事情的界限。例如,不可克隆定理告诉我们,物理学禁止我们复制未知的量子态 4 。另一方面,不可隐藏定理告诉我们,由于退相干而“丢失”的量子信息实际上只是消散在更大的环境中。因此,量子信息既不会被创造也不会被毁灭——它是一个守恒量。
功能蛋白与微透明剂的精确和高分辨率耦合对于制造微型生物电子设备至关重要。此外,微电极的电化学对电化学分析和传感器技术产生了重大影响,因为微电极的尺寸较小会影响分析物的径向扩散通量,从而提供了增强的质量传输和电极动力学。然而,与这种微电子相关的工艺技术与通常使用的召集生物结合技术之间存在了巨大的技术差距。在这里,我们使用溶剂辅助的蛋白质 - 麦克塞尔吸附印刷(GPS)进行了高分辨率和快速的几何蛋白自我图案(GPS)方法,以将夫作生物分子送到微电源上,以最小特征大小为5μm,并且打印时间约为一分钟。GPS方法用于微观的多种生物分子,包括酶,抗体和抗生物素生物素化的蛋白质,可提供良好的几何比对并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联的微电极表现出良好的电化学性能,从GPS方法中受益,可以最大程度地提高生物接口处有效的信号转导。这些微电极阵列保持了快速收敛分析物扩散,显示典型的稳态I - V特性,快速响应时间,良好的线性灵敏度(0.103 Na mm-2 mm-2 mm-1,r 2 = 0.995)和超宽线性动态范围(2 - 100 mm)。我们的发现为生物分子与微电体阵列的精确耦合提供了一种新的技术解决方案,对诊断,生物燃料细胞和生物电机设备的规模和生产具有重要意义,这些设备无法经济地实现其他现有技术。
华盛顿大学核理论研究所,西雅图,华盛顿州 98195-1550,美国(日期:2021 年 2 月 1 日 - 9:54)摘要无质量无相互作用标量场理论的两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。