是中枢神经系统(CNS)的动态过程,具有多功能功能,可维持组织稳态并提供免疫防御。整个中枢神经系统实质的紧密控制的小胶质细胞网络可促进有效的免疫监视,每个细胞都会守护着某个组织领域。每个细胞都在不断监视其环境和周围细胞,筛查病原体,还可以去除细胞碎屑和代谢物,修饰相邻的细胞并促进细胞串扰。在没有炎症的情况下,小胶质细胞的“组织监测”为中枢神经系统稳态和发育提供了重要过程。在这篇综述中,我们提供了有关由小胶质细胞介导的不同组织监视功能的摘要,潜在的分子机制以及诸如遗传突变之类的缺陷如何改变这些监视机制并引起疾病发作。
创伤性脑损伤(TBI)是一个主要的公共卫生问题。每年在美国有超过250万人由于TBI而需要急诊室护理,而超过25万人需要住院[1]。TBI是儿童和年轻人死亡的主要原因,每年导致50,000多人死亡[1]。tbi也是残疾的主要原因,因为生存的个体经常患有持续的神经功能障碍。在任何严重程度的TBI之后,三分之一的人出现了长期残疾,而在其TBI后需要住院治疗的患者中,大多数人受伤后5年仍然处于中度至严重残疾[2,3]。尽管TBI引起的发病率和死亡率很高,但临床医生没有可用的神经保护疗法,目前的治疗仅限于支持性护理。继发性损伤反应途径,包括神经炎症,在损伤时触发,并有助于持续的神经变性和神经系统功能。TBI之后的纵向实验和临床研究都清楚地表明了进行性神经退行性变性和脑萎缩,突出了继发性损伤过程的影响[4,5]。 由于继发性伤害途径可能会持续数周和几个月,因此存在治疗窗口,在此期间可以预防进行性伤害。 确定可以防止TBI进展并改善患者,神经炎症和其他继发性损伤途径的新型疗法。TBI之后的纵向实验和临床研究都清楚地表明了进行性神经退行性变性和脑萎缩,突出了继发性损伤过程的影响[4,5]。由于继发性伤害途径可能会持续数周和几个月,因此存在治疗窗口,在此期间可以预防进行性伤害。确定可以防止TBI进展并改善患者,神经炎症和其他继发性损伤途径的新型疗法。
摘要。- 目标:活性氧(ROS)是在细胞内产生的,并在生理条件下作为基础细胞过程中的第二个使者。尽管与氧化应激相关的高级ROS的有害作用已经很好地确定,但尚不清楚发育中的大脑如何对氧化还原变化反应。我们的目的是研究氧化还原改变如何影响神经发生及其基础的机制。材料和方法:我们在过氧化氢(H 2 O 2)孵育后研究了体内小胶质细胞极化和神经原质。在体内量化细胞内H 2 O 2水平,使用了一种转基因斑马鱼线,使用了ES超级和称为TG(ACTB2:HYPHY3)KA8。然后,对N9小胶质细胞,三维神经干细胞(NSC) - 乳腺癌共培养和条件培养基进行了研究,以理解氧化还原调节后神经创造的变化的基础机制。结果:在斑马鱼中,暴露于H 2 O 2的胚胎神经发生,在小胶质细胞中诱导M1极化,并触发了Wnt/β-catenin途径。n9小胶质细胞的实验表明,暴露于H 2 O 2导致小胶质细胞的M1极化,并且该极化是由Wnt/β-catenin途径介导的。氧化还原的小胶质细胞调节,干扰了共培养实验中NSC分化的小胶质细胞。NSC共培养
1神经科学计划,渥太华医院研究所,加拿大安大略省奥塔瓦2免疫学,渥太华大学,渥太华大学,安大略省,加拿大安大略省6个数字技术,加拿大国家研究委员会,渥太华,安大略省,加拿大安大略省7号医学科学司7,不列颠哥伦比亚省维多利亚大学,加拿大维多利亚大学8神经科学系8,神经科学系,加拿大卡尔顿大学,加拿大9诺,萨尔群岛,萨尔群岛。巴西圣保罗10耶鲁大学医学院,部门病理学,美国纽约州纽黑文病理学,美国纽约州纽黑文
小胶质细胞是脑特异性巨噬细胞,可对脑中的破坏性事件做出快速反应。小胶质细胞活化会导致特定的变化,包括增殖、形态变化、迁移到损伤部位以及基因表达谱的变化。炎症状态的变化与许多神经退行性疾病有关,例如帕金森病和阿尔茨海默病。因此,研究和量化小胶质细胞对于更好地了解它们在疾病进展中的作用以及评估此类疾病的新治疗方法的细胞相容性至关重要。在以下研究中,我们实施了一种基于机器学习的方法来快速自动量化小胶质细胞;将该工具与手动量化(基本事实)以及替代免费软件(例如基于阈值的 ImageJ 和基于机器学习的 Ilastik)进行了比较。我们首先在从大鼠和非人类灵长类动物获得的免疫组织化学标记小胶质细胞的脑组织上训练算法。随后,我们在帕金森病的临床前啮齿动物模型中验证了训练算法的准确性,并证明了算法在从小鼠获得的组织以及三个合作实验室提供的图像上的稳健性。我们的结果表明,机器学习算法可以精确地检测和量化所有三种哺乳动物物种中的小胶质细胞,与手动计数后观察到的细胞相当。使用此工具,我们能够检测和量化半球之间的微小变化,这表明该算法的强大和可靠性。这样的工具对于研究疾病中的小胶质细胞反应非常有用
1 弗莱堡大学医学院解剖学与细胞生物学研究所神经解剖学系,79104 弗莱堡,德国,2 弗莱堡大学 Spemann 生物医学研究生院,79104 弗莱堡,德国,3 弗莱堡大学生物学院,79104 弗莱堡,德国,4 弗莱堡大学医学院神经病理学研究所,79106 弗莱堡,德国,5 弗莱堡大学药学研究所药物生物学与生物技术系,79104 弗莱堡,德国,6 弗莱堡大学医学院医学中心血液学、肿瘤学和干细胞移植系,79106 弗莱堡,德国,7 九州大学药学研究生院分子与系统药理学系,福冈,812-8582,日本,8弗莱堡大学信号研究中心 BIOSS 和 CIBSS,79104 弗莱堡,德国,弗莱堡大学医学院神经调节基础中心 (NeuroModulBasics) 9,79106 弗莱堡,德国,弗莱堡大学 BrainLinks-BrainTools 中心 10,79110 弗莱堡,德国
基因组不稳定性是许多神经退行性疾病和中枢神经系统(CNS)癌症发展和发展的关键驱动力。DNA损伤反应的启动是维持基因组完整性和预防此类疾病的关键步骤。然而,缺乏这些反应或它们无法修复损伤引起的基因组或线粒体DNA损伤,包括电离辐射或氧化应激,可能导致细胞质中的自我DNA积累。常驻CNS细胞(例如星形胶质细胞和小胶质细胞)因通过专门的模式识别受体(PRR)识别病原体和损伤相关的分子模式,在中枢神经系统感染后产生关键的免疫介质。最近,在黑色素瘤2中不存在包括环状GMP-AMP合酶,包括环状GMP-AMP合酶,干扰素γ-诱导型16和Z-DNA结合蛋白,已被鉴定为胞质DNA传感器,并在对胶质免疫反应中对感染性剂的胶质免疫反应起着关键的作用。有趣的是,这些核酸传感器最近被证明可以识别内源性DNA并触发外周细胞类型中的免疫反应。在本综述中,我们讨论了可用的证据,即居民中枢神经系统细胞表达了胞质DNA传感器,并可以介导其对自动-DNA存在的反应。此外,我们讨论了胶质DNA传感器介导的反应的潜力,以防止肿瘤发生,与可能启动或促进神经退行性疾病发展的潜在有害神经蛋白的浮肿的启动。确定胶质化检测胞质DNA的机制以及每种途径在特定中枢神经系统疾病及其阶段的相对作用可能证明在我们对这种疾病发病机理的理解中可能是关键的,并且可能会利用新的治疗方式。
功能丧失的trem2变体与阿尔茨海默氏病(AD)的风险增加有关,表明这种先天免疫受体的激活可能是一种有用的治疗策略。在这里,我们描述了一种高亲和力的人类TREM2激活抗体,该抗体用单价转运蛋白受体(TFR)结合位点(称为抗体转运载体(ATV)),以促进血脑屏障经肿瘤。与标准的抗Trem2抗体相比,在小鼠外周递送时,ATV:TREM2显示出改善的脑生物分布和增强的信号传导。在人类诱导的多能干细胞(IPSC)衍生的小胶质细胞中,ATV:TREM2诱导增殖并改善了线粒体代谢。单细胞RNA测序和形态计量学表明,ATV:TREM2将小胶质细胞转移到了代谢响应式态,这些状态与淀粉样病理学诱导的小胶质细胞不同。在AD小鼠模型中,ATV:TREM2增强了脑小胶质细胞活性和葡萄糖代谢。因此,ATV:TREM2代表了一种有希望的改善小胶质功能并治疗AD患者中大脑低代谢的方法。
摘要:阿尔茨海默病 (AD) 被认为是一系列神经炎症疾病,其病因之一是脑内淀粉样蛋白-β (A β ) 和 tau 蛋白的异常沉积。我们重点研究了小胶质细胞中的 A β 聚集和 M1 和 M2 小胶质细胞极性,以寻找新型治疗药物。据报道,小胶质细胞中胆碱转运体样蛋白 1 (CTL1) 的胆碱摄取抑制优先诱导 M2 小胶质细胞极性。然而,胆碱转运系统在调节 AD 小胶质细胞 M1/M2 极性方面的作用尚不完全清楚。据报道,从甘草中提取的黄酮类化合物甘草查尔酮 (Licos) A–E 具有免疫抗炎作用,而 Lico A 可抑制 A β 聚集。在本研究中,我们比较了从 Lico A 到 Lico E 的五种 Licos 抑制 A β 1-42 聚集的效果。在五种 Licos 中,我们选择了 Lico E,使用永生化小鼠小胶质细胞系 SIM-A9 研究胆碱摄取抑制与小胶质细胞 M1/M2 极化之间的关系。我们新发现 Lico E 以浓度依赖性方式抑制 SIM-A9 细胞中的胆碱摄取和 A β 1-42 聚集,这表明 Lico E 对胆碱摄取的抑制作用是由 CTL1 介导的。A β 1-42 增加了 M1 小胶质细胞标志物肿瘤坏死因子 (TNF- α ) 的 mRNA 表达,并且胆碱剥夺和 Lico E 以浓度依赖性方式抑制了其作用。相反,IL-4 可增加 M2 小胶质细胞标志物精氨酸酶-1 (Arg-1) 的 mRNA 表达,而胆碱剥夺和 Lico E 可增强其作用。我们发现 Lico E 对 A β 聚集有抑制作用,并通过抑制小胶质细胞中的 CTL1 功能促进从 M1 到 M2 小胶质细胞的极性。因此,Lico E 可能成为治疗 AD 的新型领先化合物。
神经元和神经胶质是高度极化的细胞,其远端细胞质功能亚域需要特定的蛋白质。神经元具有轴突和树突状细胞质扩展,其中包含突触,其可塑性受mRNA转运和局部翻译有效调节。这些机制背后的原理对于解释远端神经胶质细胞质投影的快速局部调节(与其细胞核无关)同样有吸引力。然而,与神经元相比,mRNA定位在GLIA中几乎没有实验性关注。尽管如此,有许多功能多样的神经胶质亚型,其中包含长长的细胞质投影网络,其可能局部调节可能会影响神经元及其突触。此外,神经胶质具有许多其他类似神经元的特性,包括电活动,胶质递质的分泌和钙信号传导,例如突触传递,可塑性和轴突修剪。在这里,我们回顾了先前关于神经胶质转录本在影响突触可塑性方面重要作用的研究,重点是涉及局部翻译的一些情况。我们使用已经可用于神经元可用的尖端工具讨论了有关mRNA传输和Glia中局部翻译的各种重要问题。