小组对三名复发性GBM患者进行了早期临床试验。治疗前后进行的MRI扫描显示肿瘤大小的初始降低显着降低,尽管肿瘤最终在三个病例中的两例中最终在六个月内复发。团队现在正在努力寻找新的方法来延长治疗的耐用性。
This protocol describes the surgical procedure for co-electroporation of two plasmids targeting neu- ral stem cells (NSCs) in the lateral ventricle of mouse postnatal day 2 (P2) pups: a nonintegrating plasmid encoding for the piggyBase transposase and Cas9 and an integrating piggyBac vector car- rying the oncogenes, CRISPR guide RNAs and a TDTOMATO荧光报告蛋白通过倒末端重复序列(ITRS)倾斜(图1)。在电穿孔后,瞬时CAS9表达会导致肿瘤抑制基因失活,而PiggyBase介导的PIG-GYBAC货物的整合确保了靶向NSC及其后代中的癌基因和流动性记者的稳定表达。的整合是由PiggyBase转疗的酶促活性介导的,该转移的酶活性通过切割和粘贴机制在受体细胞基因组中的TTAA位点识别并将其与它们的内容一起插入。NSC的靶向是通过最小的人GFAP(HGFAPMIN)启动子序列1-3驾驶PiggyBase/cas9的驱动表达来实现的。
胶质母细胞瘤是一种影响中枢神经系统(CNS)的高度攻击性和侵袭性肿瘤。五年生存率仅为6.9%,中位存活时间为八个月,中枢神经系统肿瘤的存活率最低。其治疗方法包括手术切除,随后的分离放疗以及替莫唑胺的伴随和辅助化学疗法。尽管实施了临床干预措施,但复发是常见的情况,在治疗后几个月,超过80%的病例出现在切除腔边缘。高复发率和胶质母细胞瘤的位置表明需要更好地了解周围脑区域(PBZ)。在这篇综述中,我们首先描述了PBZ的主要放射学,细胞,分子和生物力学组织。随后,我们讨论了其当前的临床管理,潜在的局部治疗方法和未来的前景。
肿瘤治疗(尤其是免疫治疗和溶瘤病毒治疗)的有效性主要取决于宿主免疫细胞的活性。然而,癌症患者体内存在各种局部和全身免疫抑制机制。肿瘤相关免疫抑制涉及许多免疫成分的失调,包括 T 淋巴细胞数量减少(淋巴细胞减少症)、循环和肿瘤滤过性免疫抑制亚群水平或比率增加 [例如巨噬细胞、小胶质细胞、髓系抑制细胞 (MDSC) 和调节性 T 细胞 (Treg)],以及由于各种可溶性和膜蛋白(受体、共刺激分子和细胞因子)表达改变导致抗原呈递、辅助和效应免疫细胞亚群功能缺陷。在这篇综述中,我们特别关注标准放化疗前胶质母细胞瘤/神经胶质瘤患者的数据。我们讨论了基线时的胶质母细胞瘤相关的免疫抑制以及循环和肿瘤滤过免疫细胞(淋巴细胞、CD4+ 和 CD8+ T 细胞、Treg、自然杀伤 (NK) 细胞、中性粒细胞、巨噬细胞、MDSC 和树突状细胞)不同亚群的预后意义,包括中性粒细胞与淋巴细胞比率 (NLR),重点关注异柠檬酸脱氢酶 (IDH) 突变型胶质瘤、原神经、经典和间充质分子亚型的免疫概况和预后意义,并强调了大脑免疫监视的特点。所有试图在胶质母细胞瘤组织中确定可靠的预后免疫标志物的尝试都得到了相互矛盾的结果,这可以解释为,除其他外,免疫滤液前所未有的空间异质性水平以及免疫亚群的显著表型多样性和(功能障碍)功能状态。高 NLR 是胶质母细胞瘤和癌症患者总生存期较短的最反复证实的独立预后因素之一,其与其他免疫反应或全身炎症标志物相结合可显著提高预测的准确性;然而,需要更多的前瞻性研究来证实 NLR 的预后/预测能力。我们呼吁
癌症免疫受到白细胞与肿瘤和基质细胞的相互作用进行时空调节,导致免疫逃避和免疫疗法耐药性。在这里,我们确定了内皮细胞(EC)的独特的间充质类群体,该群体在胶质母细胞瘤(GBM)中形成了免疫抑制性血管生态位。我们揭示了一种在空间限制的,Twist1/Satb1介导的顺序转录激活机制,通过该机制,肿瘤ECS产生骨桥蛋白以促进免疫抑制巨噬细胞(Mφ)表型。Twist1的遗传学或药理消融逆转Mφ介导的免疫抑制并增强T细胞浸润和激活,从而导致GBM生长降低和扩展小鼠的存活,并使肿瘤对嵌合抗原受体TRAMEROR疗法敏感。因此,这些发现发现了控制tu-Mor免疫力的空间限制机制,并建议靶向内皮扭曲1可能为优化癌症免疫疗法提供了有吸引力的机会。
胶质瘤是中枢神经系统最常见的原发性恶性肿瘤。胶质母细胞瘤 (GBM) 是最常见的胶质瘤亚型,是发病和死亡的重要原因。该病进展迅速,预后最差,5 年生存率不足 7% (1)。对于新诊断的 GBM 患者,目前的标准治疗仍然是全切除术,然后联合放射治疗和替莫唑胺 (TMZ) 治疗 (2)。O6-甲基鸟嘌呤-DNA 甲基转移酶 (MGMT) 是一种 DNA 修复酶,可逆转烷化剂引起的 DNA 损伤,导致肿瘤对 TMZ 和亚硝脲类全身治疗产生耐药性。启动子甲基化使 MGMT 基因表观遗传沉默,使肿瘤对烷化剂治疗更敏感,并且与接受 TMZ 化疗的 GBM 患者的总体生存期更长有关 (3)。检测MGMT启动子甲基化的方法有很多种,包括甲基化特异性PCR、甲基化特异性高分辨率
结果:模拟表明,使用标准的Indygo试验方案(光通量= 200 j cm 2在球囊壁上)在治疗结束时39%的GBM细胞在治疗结束时被杀死,并且最初的光敏浓度为5μmM.5μMM。 安全。增加P热敏化剂浓度产生的细胞杀伤最大增加,当将浓度加倍至10μm时,有61%的GBM细胞杀死了,并保持治疗时间并保持相同的能力。根据这些模拟,标准试验方案进行了合理的优化,并且在没有潜在危险的情况下,细胞杀死的改善难以实现。为了改善治疗结果,应将重点放在改善光敏剂上。
这项研究的目的是开发一种基于革命性的“活药”类型的CAR-T细胞的胶质母细胞瘤方法,超越了传统的胶质母细胞瘤方法。t细胞是一种免疫细胞,可在血液中循环并保护我们的身体免受感染。CAR-T细胞是患者自己的T细胞的变体,通过实验室中的基因工程“重新编程”,具有特定的杀癌活性。数十亿这些工程的T细胞被返回到患者的血液中,在那里他们可以追捕和破坏癌细胞,同时使健康细胞不受伤害。这项技术听起来像是科幻小说,但已经用于治疗某些类型的白血病。
抽象背景缺乏肿瘤浸润的T淋巴细胞和并发的T细胞功能障碍已被确定为胶质母细胞瘤(GBM)免疫疗法耐药性的主要因素。在肿瘤微环境(TME)中上调CXCL10是一种有希望的免疫治疗方法,它可能会增加肿瘤浸润的T细胞并增强T细胞活性,但缺乏有效的递送方法。方法中,用编码CXCL10,NRF2(抗凋亡基因)和铁蛋白重链(FTH)报告基因的重组遗类病毒(MSC)转导间充质干细胞(MSC),以提高其CXCL10分泌,TME的存活率和MRI的可及性。使用FTH-MRI引导,将这些细胞注入小鼠的原位GL261和CT2A GBM的肿瘤周围。组合疗法还针对CT2A GBMS进行了由CXCL10-NRF2-FTH-MSC移植以及免疫检查点阻滞(ICB)的组合。此后,进行了体内和序列MRI,生存分析和组织学检查以评估治疗方法的功效和机制。结果CXCL10-NRF2-FTH-MSC表现出增强的T淋巴细胞募集,氧化应激耐受性和铁的积累。在体内FTH-MRI指导和监测下,CXCL10-NRF2- FTH-MSC的周围移植明显抑制了C57BL6小鼠中的原位原位GL261和CT2A肿瘤的生长,并延长了动物存活。仅凭ICB没有任何治疗影响,但与单独移植相比,CXCL10-NRF2-FTH-MSC移植与ICB结合了CT2A GBM的抗癌作用增强。组织学表明,周围注射的CXCL10-NRF2-FTH-MSC在TME中存活更长,增加了CXCL10的产生,并最终通过增加CD8 + T细胞,Interferon-γ +细胞毒性毒性细胞(CTLS)(CTLS),GZMB + CTLS和cTLS redc and redc and redc and redc and thec and the cd8 + tme重塑了TME。 (Tregs),耗尽的CD8 +和耗尽的CD4 + T细胞。结论MRI引导的CXCL10和NRF2过表达的MSC可以通过振兴TME内的T淋巴细胞来显着限制GBM的生长。CXCL10-NRF2-FTH-MSC移植和ICB治疗的结合应用提供了一种潜在的有效治疗GBM方法。
摘要,收益降低,传统临床前和基于动物的药物发现策略的临床衰竭率降低,并且正在将更多的重点放在替代药物发现平台上。ex vivo方法代表了更传统的基于临床前动物的模型和基于临床的策略,并旨在在药物发现的早期阶段解决肿瘤内和患者间的变异性。此外,这些方法还可以在肿瘤切除的一周内为患者提供精确的治疗分层,以直接定制治疗。一个可以从这种离体方法中显着受益的肿瘤组是高级神经胶质瘤,它们表现出广泛的异质性,细胞可塑性和耐药性神经胶质瘤干细胞(GSC)壁ches。对这些肿瘤的基于鼠的临床前模型的历史用途在很大程度上未能产生新的疗法,从而导致过去50年后诊断后约12-15个月的相对停滞和不可接受的生存率。如果我们能够在临床前模型中识别出有效的药物组合,可以更好地反映复杂的复杂 - 尤其内的异质性,GSC塑性和固有的DNA损伤机制,那么在标准护理(SOC)治疗方案中,手术切除(SOC)治疗方案中的近乎普遍使用损坏化学疗法就可以改善当前治疗。因此,我们已经开发和