摘要:缺血性中风是一个世界性问题,每年有 1500 万人中风。磁共振成像是了解和评估中风后大脑变化以及预测康复的宝贵工具。特别令人感兴趣的是弥散磁共振成像在非急性期(中风后 1 - 30 天)中的应用。关于弥散磁共振成像在中风中的应用,已经发表了数千篇文章,包括最近几篇回顾弥散磁共振成像在中风中的应用的文章。这项工作的目的是调查并阐述最近在中风后患者中使用弥散磁共振成像方法的情况,这些方法包括弥散峰度、广义分数各向异性、球面谐波方法以及神经突方向和弥散模型。早期研究报告称,这些类型的超 DTI 方法在对中风后变化更敏感或更好地预测结果运动评分方面优于 DTI 指标。需要进行更多更大规模的研究来证实超 DTI 方法对中风康复的预测效果更好。
© 作者 2022。由牛津大学出版社代表欧洲心脏病学会出版。这是一篇开放获取文章,根据知识共享署名-非商业许可条款发布(https://creativecommons.org/licenses/by-nc/4.0/),允许在任何媒体中进行非商业性再利用、分发和复制,前提是对原作品进行适当引用。如需商业再利用,请联系 journals.permissions@oup.com 1
审查的目的现在被认为是CNS急性损伤后结局至关重要的决定因素,有可能导致继发性损伤的发展。当前的审查总结了缺血性和出血性中风后对炎症机制的理解的最新进展,并突出了治疗前景的领域。最近发现,在缺血性和出血性中风后同时发生了突出的炎症反应,从而加剧了继发性损伤。最近的努力是为了理解刺激后弹药介导其作用的立即触发的机制。敏锐的急性刺激性急性刺激是有害的,但是亚急性刺激可以有害或保护性; Toll样受体信号传导已被视为调节因素。越来越多的证据表明,无论是prestroke还是中风引起的影响,影响中风结果,并且疗法可能还需要减弱系统性的炎症,才能有效。干细胞疗法的有益作用至少部分通过其全身性抗炎性作用来介导。抑制缺血性和出血性中风后抑制炎症的摘要仍然是一种有前途的方法。更复杂的疗法,具有多效性有益作用以及对潜在受体的更复杂的靶向,将增加成功临床翻译的可能性。
缺氧缺血性脑病(HIE)具有高死亡或残疾风险。每年,全球1500万人中风,大约33%的病例导致死亡,另有33%导致永久残疾。尽管有所有降低中风的发病率和死亡率的作用,但中风的绝对数量仍在增加。与案件增加有关的最重要因素之一似乎是在过去20年中观察到的预期寿命较长。中风的发生率在65岁以上的患者中显着增加(1)。全球疾病负担(GBD)研究表明,在30年(1990- 2019年)中,中风的绝对数量增加了70%。在全球范围内,残疾调整的终身年份(达利人)的普遍病例增加了119%,每年死亡人数为146%(2)。
摘要 当前缺血性中风的治疗策略远未达到神经功能恢复的预期目标,亟待开发新的治疗方法。外泌体是一种天然的细胞来源的囊泡,在生理和病理条件下介导细胞间的信号转导,具有免疫原性低、稳定性好、输送效率高、能穿过血脑屏障等生理特性,有可能为缺血性中风的治疗带来新的突破。纳米技术的快速发展推动了工程化外泌体的应用,可有效提高靶向性、增强治疗效果、减少所需剂量。技术的进步也推动了外泌体的临床转化研究。本文概述了外泌体的治疗作用及其在当前缺血性中风治疗策略中的积极作用,包括其抗炎、抗凋亡、自噬调节、血管生成、神经生成和减少胶质瘢痕形成等作用。然而,值得注意的是,尽管外泌体具有巨大的治疗潜力,但仍然缺乏能够产生高纯度外泌体的标准化表征方法和有效的分离技术。未来的优化策略应优先考虑探索合适的分离技术和建立统一的工作流程,以有效利用外泌体进行缺血性中风的诊断或治疗应用。最终,我们的综述旨在总结我们对基于外泌体的缺血性中风治疗前景的理解,并为开发基于外泌体的疗法提供创新思路。关键词:血脑屏障;电针;工程;运动;外泌体;缺血性中风;间充质干细胞;小胶质细胞;神经保护;支架
3–5 Canagliflozin(Invokana®,Janssen,Titusville,NJ)属于这类药物,是美国食品和药物管理局(FDA)在2013年批准的,用于治疗2型2型糖尿病和心血管疾病患者。 6然而,卡纳甘酸素心血管评估研究(Canvas)计划观察到,即使Canagliflozin改善了2型糖尿病患者的心血管和肾脏结局,但它也导致了重大和次要的下肢截肢的发病率。 7–9因此,FDA发出了黑匣子警告,以增加使用Canagliflozin的截肢风险增加。 8–10这种作用的作用机理尚不清楚;然而,多项研究表明,卡纳甘酸氟嗪具有可能影响缺血性组织恢复的多余性组织作用。 11–163–5 Canagliflozin(Invokana®,Janssen,Titusville,NJ)属于这类药物,是美国食品和药物管理局(FDA)在2013年批准的,用于治疗2型2型糖尿病和心血管疾病患者。6然而,卡纳甘酸素心血管评估研究(Canvas)计划观察到,即使Canagliflozin改善了2型糖尿病患者的心血管和肾脏结局,但它也导致了重大和次要的下肢截肢的发病率。7–9因此,FDA发出了黑匣子警告,以增加使用Canagliflozin的截肢风险增加。8–10这种作用的作用机理尚不清楚;然而,多项研究表明,卡纳甘酸氟嗪具有可能影响缺血性组织恢复的多余性组织作用。11–16
摘要 — 目的:计算机断层扫描 (CT) 扫描是一种快速且广泛使用的早期评估脑缺血性卒中症状的方法。CT 灌注 (CTP) 通常会添加到协议中,并由放射科医生用来评估卒中的严重程度。标准参数图是根据 CTP 数据集计算得出的。基于参数值组合,缺血区域被分为假定的梗塞核心(不可逆的受损组织)和半暗影(风险组织)。已经提出了不同的阈值方法将参数图分割成这些区域。本研究的目的是比较基于机器学习和阈值方法的全自动方法,以分割缺血性卒中患者的低灌注区域。方法:我们用三种主流的机器学习算法测试了两种不同的架构。我们使用参数图作为输入特征,并使用两位神经放射学专家的手动注释作为基本事实。结果:使用随机森林 (RF) 和单步方法可获得最佳结果;对于所分析的三组,我们分别实现了半暗带和核心的平均 Dice 系数 0.68 和 0.26。我们还实现了半暗带和核心的平均体积差异 25.1ml 和 7.8ml。结论:我们最好的基于 RF 的方法优于经典的阈值方法,可以分割一组患者中的缺血区域,而不管血管阻塞的严重程度如何。意义:正确可视化缺血区域将更好地指导治疗决策。
本文综述了当前人工智能在缺血性卒中影像学应用的研究进展,分析了主要挑战,并探讨了未来的研究方向。本研究强调了人工智能在梗塞区域自动分割、大血管闭塞检测、卒中结局预测、出血性转化风险评估、缺血性卒中复发风险预测、侧支循环自动分级等领域的应用。研究表明,机器学习(ML)和深度学习(DL)技术在提高诊断准确性、加速疾病识别、预测疾病进展和治疗反应方面具有巨大潜力。但这些技术的临床应用仍然面临数据量限制、模型可解释性、实时监测和更新需求等挑战。此外,本文讨论了 Transformer 架构等大型语言模型在缺血性卒中影像学分析中的应用前景,强调建立大型公共数据库的重要性,未来研究需要关注算法的可解释性和临床决策支持的全面性。总体而言,人工智能在缺血性中风管理中具有重要的应用价值;但必须克服现有的技术和实践挑战才能实现其在临床实践中的广泛应用。
摘要 — 印度的中风率远高于其他发展中国家。一小部分中风患者会因最初的创伤而立即死亡。最终导致死亡的一些主要原因可能是初始缺血性梗塞、复发性缺血性中风、复发性出血性中风、肺炎、冠状动脉疾病、肺栓塞以及其他血管或非血管原因。研究表明,将机器学习技术应用于中风,重点是根据患者的属性预测中风风险或生存可能性,而不是预测在初次中风发作后幸存下来的患者的可能结果。缺血性中风 (IS) 的评估和治疗在过去几年中取得了重大进展,越来越需要使用神经影像学进行决策。因此,该项目的目标是将机器学习原理应用于现有的大量数据集,以有效预测第一次事件后可能出现的最有可能危及生命的风险。这些算法的进一步改进可以为临床环境和中风治疗提供巨大的实用性,同时也让我们深入了解机器学习在神经成像领域的最新发展和应用,重点关注急性缺血性中风,并将监督机器学习方法应用于患者资料数据。
5-氟尿嘧啶(5-FU)是一种化学疗法药物,用于治疗各种癌症,包括乳腺癌,结肠和头颈癌。5-FU心脏毒性可能具有潜在的致命副作用,这可能表现为胸痛,心律不齐和心肌梗塞[1]。心脏毒性的发生率高达10%[2]。发病率的可变性归因于研究的队列种群,心脏毒性的不同定义以及5-FU治疗的剂量和持续时间的变化。非常高风险的患者(患有IS化学心脏病患者)更容易受到心脏毒性的影响[3]。此外,在没有任何治疗的情况下,没有任何调整的5-FU重新挑战的反复发生心脏病的发生率为90%[4]。因此,必须识别和预防高危患者的心脏毒性。已提倡几项预防措施,包括对5-FU给药前使用心电图(ECG)(ECG)和超声心动图进行全面的基线心脏评估,并进行密切监测,5-FU剂量减少或推注[5],以及使用5-FU替代方案,例如TAS-102 [6,7]。通过控制可改变的心脏危险因素和包括血管扩张剂在内的良好医疗治疗,预防非常高危患者的缺血事件是预防5-FU缺血事件的潜在策略。在导致5-FU诱导的心肌缺血的几种机制中,有冠状动脉和内皮损伤。因此,防止血管痉挛可能会减少这些不良事件的发生率。已经研究了使用血管扩张剂和硝酸盐的使用,以防止血管痉挛与5-FU化疗相关。然而,国际准则尚未采用过血管扩张剂的普遍预处理,因此并不常规建议[8,9]。我们的研究旨在检查使用专用医院方案在预防5-FU诱导的缺血性事件中使用硝酸盐和/或钙通道阻滞剂(CCB)进行预处理的功效和安全性数据,以记录缺血性心脏病的非常高危患者。