需要可离子化脂质 广义上讲,核糖核酸 (RNA) 疗法包括反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA)、信使 RNA (mRNA) 和单向导 RNA (sgRNA) 介导的 CRISPR-Cas9 系统,它们可以通过不同的作用方式操纵基本上任何感兴趣的基因 1 。然而,RNA 疗法易受核酸酶影响,并且由于其体积大且带负电荷而无法渗透细胞。通过可临床转化的脂质纳米颗粒 (LNP) 将 RNA 递送至靶细胞为应对包括 COVID-19 在内的一系列危及生命的疾病提供了巨大的机会 2 。LNP 通常由四种成分组成——可离子化脂质、磷脂、胆固醇和聚乙二醇化脂质,其中可离子化脂质在保护 RNA 和促进其胞浆运输方面起主要作用。可离子化脂质在酸性 pH 下带正电荷以将 RNA 浓缩为 LNP,但在生理 pH 下呈中性以最大程度地降低毒性。它们可以在细胞摄取后在酸性内体中质子化,并与阴离子内体磷脂相互作用形成与双层膜不相容的锥形离子对(图 1)。这些阳离子-阴离子脂质对驱动从双层结构到倒六边形 H II 相的转变,从而促进膜融合/破裂、内体逃逸和货物释放到细胞溶胶 3 。自 2008 年以来,已经创建了具有多种化学特性的可离子化脂质。根据这些脂质的结构对其进行系统分类可以极大地有利于该领域并促进下一代可离子化脂质的开发。目前,有五种主要的可离子化脂质类型被广泛用于 RNA 递送(图 1)。
总之,我们能够成功转录修饰的 eGFP mRNA、Cas9 mRNA 和 sgLuc 和 sgEGFR 并将它们封装在 LNP 中。我们通过加入假尿苷并利用 CleanCap 技术引入 5' 帽来修饰 RNA,因为它不仅可以增强 RNA 的稳定性,还可以提高翻译率并最大限度地降低在细胞内转染时的毒性。我们取得的另一个有希望的结果是关于 LNP 大小、Zeta 电位和 PDI,这似乎适合在体内实验中使用。以前的研究中还没有发现利用 LNP 作为载体(除 SARS-CoV-2 mRNA 疫苗外)的基因治疗方法。更具体地说,利用安全批准的可电离 Moderna SM-102 脂质和辉瑞 ALC-0315 脂质(我们在研究中用于生成 LNP)的体内基因治疗方法至今仍不得而知。因此,我们希望将来能开发出结合这些可电离脂质的新型基因疗法。此外,目前还没有关于将 Prime editor 包装在 LNP 中的研究。我们相信可以包装 prime editor mRNA,因为我们已经证明其他小 mRNA 也可以包装在 LNP 中。其他研究通过展示 DNA 和 RNP 的封装进一步支持了这一点。再说一遍,很难找到成功将 Piezo1 mRNA 包装在 LNP 中的研究。这可能是因为长 mRNA 的体外转录很难进行,因为 RNA 的二级结构会出现,因为进行载体线性化不是一件容易的事。因此,我们无法成功转录 Piezo1 mRNA,目前正在排除故障。然而,我们相信,一旦我们成功转录 Piezo1 mRNA,这将为治疗开辟许多可能性,例如治疗脂肪肝或肝脏组织再生,后者将有助于器官捐赠后的恢复过程。
文章历史:提交日期:2020 年 3 月 6 日修订日期:2020 年 4 月 10 日接受日期:2020 年 5 月 11 日摘要固体脂质纳米粒子 (SLN) 于 1991 年底首次推出,作为已知的旧胶体载体(如乳液、脂质体和聚合物微粒和纳米粒子)的替代转运系统。SLN 具有经典结构的优点和潜力,但避免了它们的一些常见和已知的缺点。本文回顾了 SLN 的生产技术、药物的整合、负载能力和药物的释放,特别强调了药物释放技术。与将 SLN 引入制药行业有关的问题,例如赋形剂的地位。从一开始,在过去十年中,脂质纳米粒子 (LNP) 就引起了特别广泛的关注。纳米结构脂质转运体强脂质纳米颗粒 (SLN) 成为由脂质形成的两种最重要的纳米颗粒形式。SLN 的设计能够克服某些类型的胶体载体的限制,如脂质体、乳液和聚合物纳米颗粒,因为它们具有良好的一面,如强大的排放曲线和引导药物分布,具有最完美的物理健康。NLC 将在下一代脂质纳米颗粒中改进 SLN,以增强稳定性、安全性和容量负载。本文重点介绍使用均质化和溶剂蒸发等先进生产技术减少毒性作用的方法。因为它为固体脂质纳米颗粒提供了便利
本演示文稿包含 Intellia Therapeutics, Inc.(“Intellia”、“我们”或“我们的”)根据 1995 年私人证券诉讼改革法做出的“前瞻性陈述”。这些前瞻性陈述包括但不限于关于 Intellia 推进和扩展 CRISPR/Cas9 技术以开发人类治疗产品的能力以及我们的 CRISPR/Cas9 知识产权组合的明示或暗示的陈述;我们实现稳定或有效的基因组编辑的能力;我们有效管理一剂或多剂 CRISPR/Cas9 候选产品的能力;我们临床前研究的潜在时机和进展,包括针对我们的转甲状腺素蛋白淀粉样变性(“ATTR”)项目(“NTLA-2001”)、遗传性血管性水肿(“HAE”)继续进行的非人类灵长类动物研究,以及我们其他项目的其他研究,包括临床前和人体临床试验;里程碑事件的时机和可能实现,以推进我们产品线的进展,包括开发候选药物的选择、启动新药临床试验(“IND”)支持研究和提交 IND;我们能否成功开展 NTLA-2001 的 IND 支持研究,并随后在 2020 年中期提交 IND 申请;我们能否展示我们平台的模块化,并在未来任何研究(包括人体临床试验)中复制或应用我们在临床前研究(包括 ATTR 和 HAE 计划或研究项目)中取得的成果;我们能否在临床前或临床研究中生成数据并复制与我们专有的脂质纳米颗粒(“LNP”)技术(包括其配方和成分)的增强相关的结果,或任何增强将导致产品候选概况的改进;我们专有的 LNP-腺相关病毒(“AAV”)混合递送系统的潜在开发,以推进我们复杂的基因组编辑能力;其他所有类型的体内或离体细胞疗法的潜在开发;我们计划在 2020 年上半年为我们的 HAE 项目提名一名开发候选人;我们对每个项目可能针对的潜在患者群体的预期;我们的许可人或我们从中获得权利的其他方以及第三方和竞争对手的知识产权地位和战略;政府机构的行动;我们作为一家公司的成长以及我们董事会成员和高管对我们的运营和进步的预期贡献;我们的合作对我们的研发项目的影响;有关我们开发项目的监管备案的潜在时间;我们候选产品的潜在商业化机会,包括价值和市场;我们对 2020 年资本使用和其他财务结果的预期;以及到 2021 年底的运营资金能力。
摘要:甲基苯丙胺(METH)是一种高度上瘾的心理刺激剂,不仅会影响中枢神经系统,而且对代谢和心血管健康构成了重大风险。本研究使用适当的标准方法研究了甲基对Wistar大鼠脂质谱和心血管风险的慢性影响。获得的数据表明,甲基苯丙胺在高剂量组中诱导了显着的体重减轻(从0.46至0.39 g/cm 2)。脂质谱结果(表2)表明胆固醇(CHOL),高密度脂蛋白(HDL)和低密度脂蛋白(LDL)水平降低,而甘油三酸酯(TG)则增加。发现的结果表明,慢性甲基摄入导致体重指数(BMI)的剂量依赖性降低和脂质参数的显着改变。这些表明甲基苯丙胺会改变脂质代谢,这可能导致长期使用者的心血管风险增加。doi:https://dx.doi.org/10.4314/jasem.v28i10.49许可证:cc-by-4.0开放访问政策:Jasem发表的所有文章均为开放式访问文章,并免费下载,任何人可以下载,复制,重新分配,reportibute,reperstribute,reperstribute,repost,ropost,翻译,翻译,翻译和阅读。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Ajayi,A。I; Okoro,I。O(2024)。甲基苯丙胺暴露对Wistar大鼠脂质谱和心血管风险的影响。J. Appl。SCI。 环境。 管理。 ,2010年)。SCI。环境。管理。,2010年)。28(10b补充)3347-3351日期:收到:2024年8月21日;修订:2024年9月29日;接受:2024年10月8日出版:2024年10月31日关键字:甲基苯丙胺;脂质轮廓;心血管风险;体重指数; Wistar大鼠甲基苯丙胺(甲基苯丙胺)通常以诸如“水晶甲基甲基甲基甲基苯甲酸盐”或“冰”之类的街道名称而闻名,这是一种强大的心理刺激,它以其滥用和依赖的高潜力而臭名昭著(Kish,2008年)。这是一种影响中枢神经系统的强大,高度上瘾的兴奋剂。它采用白色,无味,苦味的结晶粉的形式,可轻松溶于水或酒精(Chomchai and Chomchai,2015年)。它可以抽烟,鼻涕,注入或口服(Gonzales等人。它被归类为附表II药物,表明其在某些条件下的法律医疗用途,也表明其成瘾风险很高(Kish,2008)。在过去的几十年中,甲基苯丙胺滥用在全球范围内激增,由于对人类健康的有害影响引起了重大关注(Gonzales等人。,2010年)。与其他兴奋剂(例如可卡因和尼古丁)相比,甲基甲基生物的半寿命很长,范围从8到12小时(Gonzales等人。,2010年)。访问和可用性是该问题的主要贡献者,因为使用随时可用的零售产品
摘要 产油真菌的微生物脂质生产为生产多不饱和脂肪酸 (PUFA) 提供了潜在的来源,PUFA 是一种有价值的营养和药物应用化合物。培养条件的优化对于提高微生物脂质产量至关重要。本研究旨在利用当地产油霉菌 Cunninghamella sp 来改善脂质合成。常规研究了碳源、氮源、pH 值和培养时间等几个因素对 Cunninghamella sp 脂质积累的影响(每次一个变量)。结果表明,最有效的碳源是葡萄糖,硝酸钠是脂质合成的最佳氮源。最佳 pH 值和培养时间分别为 6.0 和 5 天。此外,使用响应面法 (RSM) 进一步优化葡萄糖浓度、硝酸钠和 pH 值以最大限度提高脂质产量。应用中心复合设计 (CCD),并使用具有二次项的多项式回归模型通过方差分析 (ANOVA) 估计实验数据。 RSM-CCD 优化结果表明,葡萄糖和硝酸钠的最佳浓度分别为 38.28 g/L 葡萄糖、0.48 g/L,pH 值为 5.79,脂质积累率为 25.4% (w/w)。二次模型表明,pH 是小克汉霉属 (Cunninghamella sp.) 脂质合成中影响最大的因素,小克汉霉属是一种具有高效脂质积累潜力的当地分离物。关键词:小克汉霉属;多不饱和脂肪酸;微生物脂质;优化;响应面法。
1。关注UCLP优先级1患者组:CVD不在他汀类药物上•讨论不开处方他汀类药物的原因(例如,不遵守,停止了几个月,检查记录?他汀类药物重复处方一段时间未收集)•他汀类药物犹豫 - 请参阅SWL指南共享决策表•使用SNOMED代码和/或根据患者重新启动HI的文档决策原因•增强行为干预和生活方式2。机会主义UCLP优先级2患者组:CVD次优汀剂量3。第3组CVD患者在最大剂量病史上,但非HDL> 2.5mmol/L(nice建议至少减少40%)通常只需要重复血液4。鉴定患者处于最大风险,并通过包括Hist和Ezetimibe在内的适当疗法来优化他们的治疗;确定多发性且您可以在一次咨询中进行多种干预
摘要:霉菌酸构成结核分枝杆菌细胞壁结构内的关键成分。由于其结构多样性,霉菌酸的组成在不同菌株之间表现出很大的变化,从而赋予了它们是分枝杆菌物种的“特征”特征的独特标签。在结核分枝杆菌中,霉菌酸的主要类别包括α-,酮 - 和甲氧基麦芽酸。虽然这些霉菌酸主要是将结核分枝杆菌的细胞壁成分(例如阿拉伯乳半于阿拉伯分氏菌,藻酸盐或葡萄糖)酯化成的,但在细菌体外生长过程中,自由霉菌酸的一小部分是分泌的。值得注意的是,不同类型的霉菌酸具有不同的能力来诱导泡沫状宏观噬菌体和触发免疫反应。此外,霉菌酸在宿主细胞的脂质代谢中起调节作用,从而对结核病的进展产生影响。conse-霉菌酸的多方面特性塑造了结核分枝杆菌采用的免疫逃避策略。对霉菌酸的全面理解对于追求结核病治疗并揭示其致病机制的复杂性至关重要。
在这个实验中,我们尝试使用 CRISPR-Cas9 技术和 LNP 来修改 SRD5A2 基因。SRD5A2 编码酶 ' 类固醇 5 α还原酶 2 ',这种酶将睾酮转化为更有效的双氢睾酮。这种酶影响男性性发育,包括毛发生长和外生殖器的形成,因此编辑这种基因将有助于治疗秃顶。为了实现这些目标,我们首先确认了具有 CRISPR 成分 DNA 形式的 Cas9-sgRNA 复合物的活性。然后,我们通过设置不同的对照来对 SRD5A2 基因编辑进行研究——我们通过制作 CRISPR 成分的 mRNA 形式、使用假尿苷和封端试剂以及不使用这种试剂来检查基因编辑的效率,据说这些试剂可以稳定 mRNA 表达。
基因疗法已成为治疗几种可怕和罕见疾病的潜在平台,而这些疾病是传统疗法无法实现的。病毒载体已被广泛探索为基因治疗的关键平台,因为它们能够有效地将基于核酸的治疗剂运送到细胞中。然而,它们在递送过程中缺乏精确度,导致了一些脱靶毒性。因此,人们已经探索了各种非病毒基因递送载体形式的策略,目前已在包括 SARS-CoV-2 疫苗在内的几种疗法中使用。在这篇综述中,我们讨论了脂质纳米颗粒 (LNP) 为有效基因递送提供的机会。我们还讨论了通过微流控技术高通量制造非病毒基因递送载体的各种合成策略。我们最后介绍了这些载体在递送不同遗传物质(如 CRISPR 编辑器和 RNA)方面的最新应用和临床试验,用于治疗从癌症到罕见疾病的不同医疗状况。 2022 由 Elsevier BV 出版 这是一篇根据 CC BY 许可 ( http://creative-commons.org/licenses/by/4.0/ ) 的开放获取文章。
